$$$2 x \sin{\left(3 x \right)}$$$ 的积分

该计算器将求出$$$2 x \sin{\left(3 x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int 2 x \sin{\left(3 x \right)}\, dx$$$

解答

$$$c=2$$$$$$f{\left(x \right)} = x \sin{\left(3 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{2 x \sin{\left(3 x \right)} d x}}} = {\color{red}{\left(2 \int{x \sin{\left(3 x \right)} d x}\right)}}$$

对于积分$$$\int{x \sin{\left(3 x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=x$$$$$$\operatorname{dv}=\sin{\left(3 x \right)} dx$$$

$$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{\sin{\left(3 x \right)} d x}=- \frac{\cos{\left(3 x \right)}}{3}$$$ (步骤见 »)。

因此,

$$2 {\color{red}{\int{x \sin{\left(3 x \right)} d x}}}=2 {\color{red}{\left(x \cdot \left(- \frac{\cos{\left(3 x \right)}}{3}\right)-\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right) \cdot 1 d x}\right)}}=2 {\color{red}{\left(- \frac{x \cos{\left(3 x \right)}}{3} - \int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}\right)}}$$

$$$c=- \frac{1}{3}$$$$$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{2 x \cos{\left(3 x \right)}}{3} - 2 {\color{red}{\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}}} = - \frac{2 x \cos{\left(3 x \right)}}{3} - 2 {\color{red}{\left(- \frac{\int{\cos{\left(3 x \right)} d x}}{3}\right)}}$$

$$$u=3 x$$$

$$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (步骤见»),并有$$$dx = \frac{du}{3}$$$

该积分可以改写为

$$- \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{3} = - \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3}$$

$$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3} = - \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{3}$$

余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$

$$- \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{9} = - \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\sin{\left(u \right)}}}}{9}$$

回忆一下 $$$u=3 x$$$:

$$- \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 \sin{\left({\color{red}{u}} \right)}}{9} = - \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 \sin{\left({\color{red}{\left(3 x\right)}} \right)}}{9}$$

因此,

$$\int{2 x \sin{\left(3 x \right)} d x} = - \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 \sin{\left(3 x \right)}}{9}$$

加上积分常数:

$$\int{2 x \sin{\left(3 x \right)} d x} = - \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 \sin{\left(3 x \right)}}{9}+C$$

答案

$$$\int 2 x \sin{\left(3 x \right)}\, dx = \left(- \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 \sin{\left(3 x \right)}}{9}\right) + C$$$A


Please try a new game Rotatly