Integral dari $$$2 x \sin{\left(3 x \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int 2 x \sin{\left(3 x \right)}\, dx$$$.
Solusi
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=2$$$ dan $$$f{\left(x \right)} = x \sin{\left(3 x \right)}$$$:
$${\color{red}{\int{2 x \sin{\left(3 x \right)} d x}}} = {\color{red}{\left(2 \int{x \sin{\left(3 x \right)} d x}\right)}}$$
Untuk integral $$$\int{x \sin{\left(3 x \right)} d x}$$$, gunakan integrasi parsial $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Misalkan $$$\operatorname{u}=x$$$ dan $$$\operatorname{dv}=\sin{\left(3 x \right)} dx$$$.
Maka $$$\operatorname{du}=\left(x\right)^{\prime }dx=1 dx$$$ (langkah-langkah dapat dilihat di ») dan $$$\operatorname{v}=\int{\sin{\left(3 x \right)} d x}=- \frac{\cos{\left(3 x \right)}}{3}$$$ (langkah-langkah dapat dilihat di »).
Jadi,
$$2 {\color{red}{\int{x \sin{\left(3 x \right)} d x}}}=2 {\color{red}{\left(x \cdot \left(- \frac{\cos{\left(3 x \right)}}{3}\right)-\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right) \cdot 1 d x}\right)}}=2 {\color{red}{\left(- \frac{x \cos{\left(3 x \right)}}{3} - \int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}\right)}}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=- \frac{1}{3}$$$ dan $$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$:
$$- \frac{2 x \cos{\left(3 x \right)}}{3} - 2 {\color{red}{\int{\left(- \frac{\cos{\left(3 x \right)}}{3}\right)d x}}} = - \frac{2 x \cos{\left(3 x \right)}}{3} - 2 {\color{red}{\left(- \frac{\int{\cos{\left(3 x \right)} d x}}{3}\right)}}$$
Misalkan $$$u=3 x$$$.
Kemudian $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$dx = \frac{du}{3}$$$.
Oleh karena itu,
$$- \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{3} = - \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3}$$
Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{3}$$$ dan $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{3} = - \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{3}$$
Integral dari kosinus adalah $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{9} = - \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 {\color{red}{\sin{\left(u \right)}}}}{9}$$
Ingat bahwa $$$u=3 x$$$:
$$- \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 \sin{\left({\color{red}{u}} \right)}}{9} = - \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 \sin{\left({\color{red}{\left(3 x\right)}} \right)}}{9}$$
Oleh karena itu,
$$\int{2 x \sin{\left(3 x \right)} d x} = - \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 \sin{\left(3 x \right)}}{9}$$
Tambahkan konstanta integrasi:
$$\int{2 x \sin{\left(3 x \right)} d x} = - \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 \sin{\left(3 x \right)}}{9}+C$$
Jawaban
$$$\int 2 x \sin{\left(3 x \right)}\, dx = \left(- \frac{2 x \cos{\left(3 x \right)}}{3} + \frac{2 \sin{\left(3 x \right)}}{9}\right) + C$$$A