$$$\frac{t^{2} e^{- x^{2}}}{u}$$$ 关于$$$x$$$的积分

该计算器将求出$$$\frac{t^{2} e^{- x^{2}}}{u}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{t^{2} e^{- x^{2}}}{u}\, dx$$$

解答

$$$c=\frac{t^{2}}{u}$$$$$$f{\left(x \right)} = e^{- x^{2}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\frac{t^{2} e^{- x^{2}}}{u} d x}}} = {\color{red}{\frac{t^{2} \int{e^{- x^{2}} d x}}{u}}}$$

该积分(误差函数)没有闭式表达式:

$$\frac{t^{2} {\color{red}{\int{e^{- x^{2}} d x}}}}{u} = \frac{t^{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}}{u}$$

因此,

$$\int{\frac{t^{2} e^{- x^{2}}}{u} d x} = \frac{\sqrt{\pi} t^{2} \operatorname{erf}{\left(x \right)}}{2 u}$$

加上积分常数:

$$\int{\frac{t^{2} e^{- x^{2}}}{u} d x} = \frac{\sqrt{\pi} t^{2} \operatorname{erf}{\left(x \right)}}{2 u}+C$$

答案

$$$\int \frac{t^{2} e^{- x^{2}}}{u}\, dx = \frac{\sqrt{\pi} t^{2} \operatorname{erf}{\left(x \right)}}{2 u} + C$$$A


Please try a new game Rotatly