Integral of $$$\frac{t^{2} e^{- x^{2}}}{u}$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$\frac{t^{2} e^{- x^{2}}}{u}$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{t^{2} e^{- x^{2}}}{u}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{t^{2}}{u}$$$ and $$$f{\left(x \right)} = e^{- x^{2}}$$$:

$${\color{red}{\int{\frac{t^{2} e^{- x^{2}}}{u} d x}}} = {\color{red}{\frac{t^{2} \int{e^{- x^{2}} d x}}{u}}}$$

This integral (Error Function) does not have a closed form:

$$\frac{t^{2} {\color{red}{\int{e^{- x^{2}} d x}}}}{u} = \frac{t^{2} {\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erf}{\left(x \right)}}{2}\right)}}}{u}$$

Therefore,

$$\int{\frac{t^{2} e^{- x^{2}}}{u} d x} = \frac{\sqrt{\pi} t^{2} \operatorname{erf}{\left(x \right)}}{2 u}$$

Add the constant of integration:

$$\int{\frac{t^{2} e^{- x^{2}}}{u} d x} = \frac{\sqrt{\pi} t^{2} \operatorname{erf}{\left(x \right)}}{2 u}+C$$

Answer

$$$\int \frac{t^{2} e^{- x^{2}}}{u}\, dx = \frac{\sqrt{\pi} t^{2} \operatorname{erf}{\left(x \right)}}{2 u} + C$$$A


Please try a new game Rotatly