$$$\frac{- 21 x - 20}{4 x^{8}}$$$ 的积分

该计算器将求出$$$\frac{- 21 x - 20}{4 x^{8}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{- 21 x - 20}{4 x^{8}}\, dx$$$

解答

输入已重写为:$$$\int{\frac{- 21 x - 20}{4 x^{8}} d x}=\int{\frac{- \frac{21 x}{4} - 5}{x^{8}} d x}$$$

化简被积函数:

$${\color{red}{\int{\frac{- \frac{21 x}{4} - 5}{x^{8}} d x}}} = {\color{red}{\int{\left(- \frac{\frac{21 x}{4} + 5}{x^{8}}\right)d x}}}$$

$$$c=-1$$$$$$f{\left(x \right)} = \frac{\frac{21 x}{4} + 5}{x^{8}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\left(- \frac{\frac{21 x}{4} + 5}{x^{8}}\right)d x}}} = {\color{red}{\left(- \int{\frac{\frac{21 x}{4} + 5}{x^{8}} d x}\right)}}$$

Simplify:

$$- {\color{red}{\int{\frac{\frac{21 x}{4} + 5}{x^{8}} d x}}} = - {\color{red}{\int{\frac{21 x + 20}{4 x^{8}} d x}}}$$

$$$c=\frac{1}{4}$$$$$$f{\left(x \right)} = \frac{21 x + 20}{x^{8}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- {\color{red}{\int{\frac{21 x + 20}{4 x^{8}} d x}}} = - {\color{red}{\left(\frac{\int{\frac{21 x + 20}{x^{8}} d x}}{4}\right)}}$$

Expand the expression:

$$- \frac{{\color{red}{\int{\frac{21 x + 20}{x^{8}} d x}}}}{4} = - \frac{{\color{red}{\int{\left(\frac{21}{x^{7}} + \frac{20}{x^{8}}\right)d x}}}}{4}$$

逐项积分:

$$- \frac{{\color{red}{\int{\left(\frac{21}{x^{7}} + \frac{20}{x^{8}}\right)d x}}}}{4} = - \frac{{\color{red}{\left(\int{\frac{20}{x^{8}} d x} + \int{\frac{21}{x^{7}} d x}\right)}}}{4}$$

$$$c=20$$$$$$f{\left(x \right)} = \frac{1}{x^{8}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{\int{\frac{21}{x^{7}} d x}}{4} - \frac{{\color{red}{\int{\frac{20}{x^{8}} d x}}}}{4} = - \frac{\int{\frac{21}{x^{7}} d x}}{4} - \frac{{\color{red}{\left(20 \int{\frac{1}{x^{8}} d x}\right)}}}{4}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-8$$$

$$- \frac{\int{\frac{21}{x^{7}} d x}}{4} - 5 {\color{red}{\int{\frac{1}{x^{8}} d x}}}=- \frac{\int{\frac{21}{x^{7}} d x}}{4} - 5 {\color{red}{\int{x^{-8} d x}}}=- \frac{\int{\frac{21}{x^{7}} d x}}{4} - 5 {\color{red}{\frac{x^{-8 + 1}}{-8 + 1}}}=- \frac{\int{\frac{21}{x^{7}} d x}}{4} - 5 {\color{red}{\left(- \frac{x^{-7}}{7}\right)}}=- \frac{\int{\frac{21}{x^{7}} d x}}{4} - 5 {\color{red}{\left(- \frac{1}{7 x^{7}}\right)}}$$

$$$c=21$$$$$$f{\left(x \right)} = \frac{1}{x^{7}}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \frac{{\color{red}{\int{\frac{21}{x^{7}} d x}}}}{4} + \frac{5}{7 x^{7}} = - \frac{{\color{red}{\left(21 \int{\frac{1}{x^{7}} d x}\right)}}}{4} + \frac{5}{7 x^{7}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=-7$$$

$$- \frac{21 {\color{red}{\int{\frac{1}{x^{7}} d x}}}}{4} + \frac{5}{7 x^{7}}=- \frac{21 {\color{red}{\int{x^{-7} d x}}}}{4} + \frac{5}{7 x^{7}}=- \frac{21 {\color{red}{\frac{x^{-7 + 1}}{-7 + 1}}}}{4} + \frac{5}{7 x^{7}}=- \frac{21 {\color{red}{\left(- \frac{x^{-6}}{6}\right)}}}{4} + \frac{5}{7 x^{7}}=- \frac{21 {\color{red}{\left(- \frac{1}{6 x^{6}}\right)}}}{4} + \frac{5}{7 x^{7}}$$

因此,

$$\int{\frac{- \frac{21 x}{4} - 5}{x^{8}} d x} = \frac{7}{8 x^{6}} + \frac{5}{7 x^{7}}$$

化简:

$$\int{\frac{- \frac{21 x}{4} - 5}{x^{8}} d x} = \frac{49 x + 40}{56 x^{7}}$$

加上积分常数:

$$\int{\frac{- \frac{21 x}{4} - 5}{x^{8}} d x} = \frac{49 x + 40}{56 x^{7}}+C$$

答案

$$$\int \frac{- 21 x - 20}{4 x^{8}}\, dx = \frac{49 x + 40}{56 x^{7}} + C$$$A


Please try a new game Rotatly