$$$\frac{\ln^{2}\left(x\right)}{x^{2}}$$$ 的积分

该计算器将求出$$$\frac{\ln^{2}\left(x\right)}{x^{2}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{\ln^{2}\left(x\right)}{x^{2}}\, dx$$$

解答

$$$u=\frac{1}{x}$$$

$$$du=\left(\frac{1}{x}\right)^{\prime }dx = - \frac{1}{x^{2}} dx$$$ (步骤见»),并有$$$\frac{dx}{x^{2}} = - du$$$

积分变为

$${\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x^{2}} d x}}} = {\color{red}{\int{\left(- \ln{\left(u \right)}^{2}\right)d u}}}$$

$$$c=-1$$$$$$f{\left(u \right)} = \ln{\left(u \right)}^{2}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\left(- \ln{\left(u \right)}^{2}\right)d u}}} = {\color{red}{\left(- \int{\ln{\left(u \right)}^{2} d u}\right)}}$$

对于积分$$$\int{\ln{\left(u \right)}^{2} d u}$$$,使用分部积分法$$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$

$$$\operatorname{m}=\ln{\left(u \right)}^{2}$$$$$$\operatorname{dv}=du$$$

$$$\operatorname{dm}=\left(\ln{\left(u \right)}^{2}\right)^{\prime }du=\frac{2 \ln{\left(u \right)}}{u} du$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d u}=u$$$ (步骤见 »)。

所以,

$$- {\color{red}{\int{\ln{\left(u \right)}^{2} d u}}}=- {\color{red}{\left(\ln{\left(u \right)}^{2} \cdot u-\int{u \cdot \frac{2 \ln{\left(u \right)}}{u} d u}\right)}}=- {\color{red}{\left(u \ln{\left(u \right)}^{2} - \int{2 \ln{\left(u \right)} d u}\right)}}$$

$$$c=2$$$$$$f{\left(u \right)} = \ln{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- u \ln{\left(u \right)}^{2} + {\color{red}{\int{2 \ln{\left(u \right)} d u}}} = - u \ln{\left(u \right)}^{2} + {\color{red}{\left(2 \int{\ln{\left(u \right)} d u}\right)}}$$

对于积分$$$\int{\ln{\left(u \right)} d u}$$$,使用分部积分法$$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$

$$$\operatorname{m}=\ln{\left(u \right)}$$$$$$\operatorname{dv}=du$$$

$$$\operatorname{dm}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{1 d u}=u$$$ (步骤见 »)。

因此,

$$- u \ln{\left(u \right)}^{2} + 2 {\color{red}{\int{\ln{\left(u \right)} d u}}}=- u \ln{\left(u \right)}^{2} + 2 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=- u \ln{\left(u \right)}^{2} + 2 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$

应用常数法则 $$$\int c\, du = c u$$$,使用 $$$c=1$$$

$$- u \ln{\left(u \right)}^{2} + 2 u \ln{\left(u \right)} - 2 {\color{red}{\int{1 d u}}} = - u \ln{\left(u \right)}^{2} + 2 u \ln{\left(u \right)} - 2 {\color{red}{u}}$$

回忆一下 $$$u=\frac{1}{x}$$$:

$$- 2 {\color{red}{u}} + 2 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} - {\color{red}{u}} \ln{\left({\color{red}{u}} \right)}^{2} = - 2 {\color{red}{\frac{1}{x}}} + 2 {\color{red}{\frac{1}{x}}} \ln{\left({\color{red}{\frac{1}{x}}} \right)} - {\color{red}{\frac{1}{x}}} \ln{\left({\color{red}{\frac{1}{x}}} \right)}^{2}$$

因此,

$$\int{\frac{\ln{\left(x \right)}^{2}}{x^{2}} d x} = - \frac{\ln{\left(\frac{1}{x} \right)}^{2}}{x} + \frac{2 \ln{\left(\frac{1}{x} \right)}}{x} - \frac{2}{x}$$

化简:

$$\int{\frac{\ln{\left(x \right)}^{2}}{x^{2}} d x} = \frac{- \ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} - 2}{x}$$

加上积分常数:

$$\int{\frac{\ln{\left(x \right)}^{2}}{x^{2}} d x} = \frac{- \ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} - 2}{x}+C$$

答案

$$$\int \frac{\ln^{2}\left(x\right)}{x^{2}}\, dx = \frac{- \ln^{2}\left(x\right) - 2 \ln\left(x\right) - 2}{x} + C$$$A


Please try a new game Rotatly