Integral de $$$\frac{\ln^{2}\left(x\right)}{x^{2}}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{\ln^{2}\left(x\right)}{x^{2}}\, dx$$$.
Solución
Sea $$$u=\frac{1}{x}$$$.
Entonces $$$du=\left(\frac{1}{x}\right)^{\prime }dx = - \frac{1}{x^{2}} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\frac{dx}{x^{2}} = - du$$$.
Entonces,
$${\color{red}{\int{\frac{\ln{\left(x \right)}^{2}}{x^{2}} d x}}} = {\color{red}{\int{\left(- \ln{\left(u \right)}^{2}\right)d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ y $$$f{\left(u \right)} = \ln{\left(u \right)}^{2}$$$:
$${\color{red}{\int{\left(- \ln{\left(u \right)}^{2}\right)d u}}} = {\color{red}{\left(- \int{\ln{\left(u \right)}^{2} d u}\right)}}$$
Para la integral $$$\int{\ln{\left(u \right)}^{2} d u}$$$, utiliza la integración por partes $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.
Sean $$$\operatorname{m}=\ln{\left(u \right)}^{2}$$$ y $$$\operatorname{dv}=du$$$.
Entonces $$$\operatorname{dm}=\left(\ln{\left(u \right)}^{2}\right)^{\prime }du=\frac{2 \ln{\left(u \right)}}{u} du$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{1 d u}=u$$$ (los pasos pueden verse »).
Por lo tanto,
$$- {\color{red}{\int{\ln{\left(u \right)}^{2} d u}}}=- {\color{red}{\left(\ln{\left(u \right)}^{2} \cdot u-\int{u \cdot \frac{2 \ln{\left(u \right)}}{u} d u}\right)}}=- {\color{red}{\left(u \ln{\left(u \right)}^{2} - \int{2 \ln{\left(u \right)} d u}\right)}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=2$$$ y $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:
$$- u \ln{\left(u \right)}^{2} + {\color{red}{\int{2 \ln{\left(u \right)} d u}}} = - u \ln{\left(u \right)}^{2} + {\color{red}{\left(2 \int{\ln{\left(u \right)} d u}\right)}}$$
Para la integral $$$\int{\ln{\left(u \right)} d u}$$$, utiliza la integración por partes $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.
Sean $$$\operatorname{m}=\ln{\left(u \right)}$$$ y $$$\operatorname{dv}=du$$$.
Entonces $$$\operatorname{dm}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (los pasos pueden verse ») y $$$\operatorname{v}=\int{1 d u}=u$$$ (los pasos pueden verse »).
Entonces,
$$- u \ln{\left(u \right)}^{2} + 2 {\color{red}{\int{\ln{\left(u \right)} d u}}}=- u \ln{\left(u \right)}^{2} + 2 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=- u \ln{\left(u \right)}^{2} + 2 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
Aplica la regla de la constante $$$\int c\, du = c u$$$ con $$$c=1$$$:
$$- u \ln{\left(u \right)}^{2} + 2 u \ln{\left(u \right)} - 2 {\color{red}{\int{1 d u}}} = - u \ln{\left(u \right)}^{2} + 2 u \ln{\left(u \right)} - 2 {\color{red}{u}}$$
Recordemos que $$$u=\frac{1}{x}$$$:
$$- 2 {\color{red}{u}} + 2 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} - {\color{red}{u}} \ln{\left({\color{red}{u}} \right)}^{2} = - 2 {\color{red}{\frac{1}{x}}} + 2 {\color{red}{\frac{1}{x}}} \ln{\left({\color{red}{\frac{1}{x}}} \right)} - {\color{red}{\frac{1}{x}}} \ln{\left({\color{red}{\frac{1}{x}}} \right)}^{2}$$
Por lo tanto,
$$\int{\frac{\ln{\left(x \right)}^{2}}{x^{2}} d x} = - \frac{\ln{\left(\frac{1}{x} \right)}^{2}}{x} + \frac{2 \ln{\left(\frac{1}{x} \right)}}{x} - \frac{2}{x}$$
Simplificar:
$$\int{\frac{\ln{\left(x \right)}^{2}}{x^{2}} d x} = \frac{- \ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} - 2}{x}$$
Añade la constante de integración:
$$\int{\frac{\ln{\left(x \right)}^{2}}{x^{2}} d x} = \frac{- \ln{\left(x \right)}^{2} - 2 \ln{\left(x \right)} - 2}{x}+C$$
Respuesta
$$$\int \frac{\ln^{2}\left(x\right)}{x^{2}}\, dx = \frac{- \ln^{2}\left(x\right) - 2 \ln\left(x\right) - 2}{x} + C$$$A