定积分与广义积分计算器
逐步计算定积分和广义积分
该计算器将尝试计算定积分(即带上下限的积分),包括广义积分,并显示求解步骤。
Solution
Your input: calculate $$$\int_{0}^{\pi}\left( \tan{\left(x \right)} \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\tan{\left(x \right)} d x}=- \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}$$$ (for steps, see indefinite integral calculator)
The interval of integration contains the point $$$\frac{\pi}{2}$$$, which is not in the domain of the integrand, so this is an improper integral of type 2.
Therefore, divide the interval into the following subintervals: $$$\left(0, \frac{\pi}{2}\right)$$$, $$$\left(\frac{\pi}{2}, \pi\right)$$$. Evaluate the integral over each subinterval.
To evaluate an integral over an interval, we use the Fundamental Theorem of Calculus. However, we need to use limit if an endpoint of the interval is special (is not in the domain of the function).
$$$\int_{0}^{\frac{\pi}{2}}\left( \tan{\left(x \right)} \right)dx=\lim_{x \to \frac{\pi}{2}}\left(- \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}\right)-\left(- \ln{\left(\left|{\cos{\left(x \right)}}\right| \right)}\right)|_{\left(x=0\right)}=\infty$$$
Since the value of the integral is not finite, the value of the initial integral is not finite either. Thus, the integral is divergent.
Answer: the integral is divergent.