定积分与广义积分计算器
逐步计算定积分和广义积分
该计算器将尝试计算定积分(即带上下限的积分),包括广义积分,并显示求解步骤。
Solution
Your input: calculate $$$\int_{0}^{2}\left( \pi \left(- x^{2} + 2 x\right) \right)dx$$$
First, calculate the corresponding indefinite integral: $$$\int{\pi \left(- x^{2} + 2 x\right) d x}=\frac{\pi x^{2} \left(3 - x\right)}{3}$$$ (for steps, see indefinite integral calculator)
According to the Fundamental Theorem of Calculus, $$$\int_a^b F(x) dx=f(b)-f(a)$$$, so just evaluate the integral at the endpoints, and that's the answer.
$$$\left(\frac{\pi x^{2} \left(3 - x\right)}{3}\right)|_{\left(x=2\right)}=\frac{4 \pi}{3}$$$
$$$\left(\frac{\pi x^{2} \left(3 - x\right)}{3}\right)|_{\left(x=0\right)}=0$$$
$$$\int_{0}^{2}\left( \pi \left(- x^{2} + 2 x\right) \right)dx=\left(\frac{\pi x^{2} \left(3 - x\right)}{3}\right)|_{\left(x=2\right)}-\left(\frac{\pi x^{2} \left(3 - x\right)}{3}\right)|_{\left(x=0\right)}=\frac{4 \pi}{3}$$$
Answer: $$$\int_{0}^{2}\left( \pi \left(- x^{2} + 2 x\right) \right)dx=\frac{4 \pi}{3}\approx 4.18879020478639$$$