$$$\frac{1}{x^{2}}$$$ 的二阶导数

该计算器将求出$$$\frac{1}{x^{2}}$$$的二阶导数,并显示步骤。

相关计算器: 导数计算器, 对数求导法计算器

留空以自动检测。
如果不需要在特定点处的导数,请留空。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{x^{2}}\right)$$$

解答

求一阶导数 $$$\frac{d}{dx} \left(\frac{1}{x^{2}}\right)$$$

应用幂次法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,其中 $$$n = -2$$$:

$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{x^{2}}\right)\right)} = {\color{red}\left(- \frac{2}{x^{3}}\right)}$$

因此,$$$\frac{d}{dx} \left(\frac{1}{x^{2}}\right) = - \frac{2}{x^{3}}$$$

接下来,$$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{x^{2}}\right) = \frac{d}{dx} \left(- \frac{2}{x^{3}}\right)$$$

$$$c = -2$$$$$$f{\left(x \right)} = \frac{1}{x^{3}}$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$

$${\color{red}\left(\frac{d}{dx} \left(- \frac{2}{x^{3}}\right)\right)} = {\color{red}\left(- 2 \frac{d}{dx} \left(\frac{1}{x^{3}}\right)\right)}$$

应用幂次法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,其中 $$$n = -3$$$:

$$- 2 {\color{red}\left(\frac{d}{dx} \left(\frac{1}{x^{3}}\right)\right)} = - 2 {\color{red}\left(- \frac{3}{x^{4}}\right)}$$

因此,$$$\frac{d}{dx} \left(- \frac{2}{x^{3}}\right) = \frac{6}{x^{4}}$$$

因此,$$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{x^{2}}\right) = \frac{6}{x^{4}}$$$

答案

$$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{x^{2}}\right) = \frac{6}{x^{4}}$$$A


Please try a new game Rotatly