$$$\frac{1}{x^{2}}$$$'nin ikinci türevi

Hesaplayıcı, adımları göstererek $$$\frac{1}{x^{2}}$$$'in ikinci türevini bulacaktır.

İlgili hesaplayıcılar: Türev Hesaplayıcı, Logaritmik Türev Hesaplayıcı

Otomatik algılama için boş bırakın.
Belirli bir noktadaki türeve ihtiyacınız yoksa boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{x^{2}}\right)$$$.

Çözüm

Birinci türevi bulun $$$\frac{d}{dx} \left(\frac{1}{x^{2}}\right)$$$

$$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ şeklindeki kuvvet kuralını $$$n = -2$$$ ile uygula:

$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{x^{2}}\right)\right)} = {\color{red}\left(- \frac{2}{x^{3}}\right)}$$

Dolayısıyla, $$$\frac{d}{dx} \left(\frac{1}{x^{2}}\right) = - \frac{2}{x^{3}}$$$.

Ardından, $$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{x^{2}}\right) = \frac{d}{dx} \left(- \frac{2}{x^{3}}\right)$$$

Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = -2$$$ ve $$$f{\left(x \right)} = \frac{1}{x^{3}}$$$ ile uygula:

$${\color{red}\left(\frac{d}{dx} \left(- \frac{2}{x^{3}}\right)\right)} = {\color{red}\left(- 2 \frac{d}{dx} \left(\frac{1}{x^{3}}\right)\right)}$$

$$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ şeklindeki kuvvet kuralını $$$n = -3$$$ ile uygula:

$$- 2 {\color{red}\left(\frac{d}{dx} \left(\frac{1}{x^{3}}\right)\right)} = - 2 {\color{red}\left(- \frac{3}{x^{4}}\right)}$$

Dolayısıyla, $$$\frac{d}{dx} \left(- \frac{2}{x^{3}}\right) = \frac{6}{x^{4}}$$$.

Dolayısıyla, $$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{x^{2}}\right) = \frac{6}{x^{4}}$$$.

Cevap

$$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{x^{2}}\right) = \frac{6}{x^{4}}$$$A


Please try a new game Rotatly