$$$\cot{\left(\pi x \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \cot{\left(\pi x \right)}\, dx$$$.
Çözüm
$$$u=\pi x$$$ olsun.
Böylece $$$du=\left(\pi x\right)^{\prime }dx = \pi dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{\pi}$$$ elde ederiz.
İntegral şu hale gelir
$${\color{red}{\int{\cot{\left(\pi x \right)} d x}}} = {\color{red}{\int{\frac{\cot{\left(u \right)}}{\pi} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{\pi}$$$ ve $$$f{\left(u \right)} = \cot{\left(u \right)}$$$ ile uygula:
$${\color{red}{\int{\frac{\cot{\left(u \right)}}{\pi} d u}}} = {\color{red}{\frac{\int{\cot{\left(u \right)} d u}}{\pi}}}$$
Kotanjantı $$$\cot\left( u \right)=\frac{\cos\left( u \right)}{\sin\left( u \right)}$$$ olarak yeniden yazın:
$$\frac{{\color{red}{\int{\cot{\left(u \right)} d u}}}}{\pi} = \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{\sin{\left(u \right)}} d u}}}}{\pi}$$
$$$v=\sin{\left(u \right)}$$$ olsun.
Böylece $$$dv=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du$$$ (adımlar » görülebilir) ve $$$\cos{\left(u \right)} du = dv$$$ elde ederiz.
Dolayısıyla,
$$\frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{\sin{\left(u \right)}} d u}}}}{\pi} = \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{\pi}$$
$$$\frac{1}{v}$$$'nin integrali $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{v} d v}}}}{\pi} = \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{\pi}$$
Hatırlayın ki $$$v=\sin{\left(u \right)}$$$:
$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{\pi} = \frac{\ln{\left(\left|{{\color{red}{\sin{\left(u \right)}}}}\right| \right)}}{\pi}$$
Hatırlayın ki $$$u=\pi x$$$:
$$\frac{\ln{\left(\left|{\sin{\left({\color{red}{u}} \right)}}\right| \right)}}{\pi} = \frac{\ln{\left(\left|{\sin{\left({\color{red}{\pi x}} \right)}}\right| \right)}}{\pi}$$
Dolayısıyla,
$$\int{\cot{\left(\pi x \right)} d x} = \frac{\ln{\left(\left|{\sin{\left(\pi x \right)}}\right| \right)}}{\pi}$$
İntegrasyon sabitini ekleyin:
$$\int{\cot{\left(\pi x \right)} d x} = \frac{\ln{\left(\left|{\sin{\left(\pi x \right)}}\right| \right)}}{\pi}+C$$
Cevap
$$$\int \cot{\left(\pi x \right)}\, dx = \frac{\ln\left(\left|{\sin{\left(\pi x \right)}}\right|\right)}{\pi} + C$$$A