Integral de $$$\cot{\left(\pi x \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$\cot{\left(\pi x \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \cot{\left(\pi x \right)}\, dx$$$.

Solución

Sea $$$u=\pi x$$$.

Entonces $$$du=\left(\pi x\right)^{\prime }dx = \pi dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{\pi}$$$.

La integral se convierte en

$${\color{red}{\int{\cot{\left(\pi x \right)} d x}}} = {\color{red}{\int{\frac{\cot{\left(u \right)}}{\pi} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{\pi}$$$ y $$$f{\left(u \right)} = \cot{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\cot{\left(u \right)}}{\pi} d u}}} = {\color{red}{\frac{\int{\cot{\left(u \right)} d u}}{\pi}}}$$

Reescribe la cotangente como $$$\cot\left( u \right)=\frac{\cos\left( u \right)}{\sin\left( u \right)}$$$:

$$\frac{{\color{red}{\int{\cot{\left(u \right)} d u}}}}{\pi} = \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{\sin{\left(u \right)}} d u}}}}{\pi}$$

Sea $$$v=\sin{\left(u \right)}$$$.

Entonces $$$dv=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du$$$ (los pasos pueden verse »), y obtenemos que $$$\cos{\left(u \right)} du = dv$$$.

Por lo tanto,

$$\frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{\sin{\left(u \right)}} d u}}}}{\pi} = \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{\pi}$$

La integral de $$$\frac{1}{v}$$$ es $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{v} d v}}}}{\pi} = \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{\pi}$$

Recordemos que $$$v=\sin{\left(u \right)}$$$:

$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{\pi} = \frac{\ln{\left(\left|{{\color{red}{\sin{\left(u \right)}}}}\right| \right)}}{\pi}$$

Recordemos que $$$u=\pi x$$$:

$$\frac{\ln{\left(\left|{\sin{\left({\color{red}{u}} \right)}}\right| \right)}}{\pi} = \frac{\ln{\left(\left|{\sin{\left({\color{red}{\pi x}} \right)}}\right| \right)}}{\pi}$$

Por lo tanto,

$$\int{\cot{\left(\pi x \right)} d x} = \frac{\ln{\left(\left|{\sin{\left(\pi x \right)}}\right| \right)}}{\pi}$$

Añade la constante de integración:

$$\int{\cot{\left(\pi x \right)} d x} = \frac{\ln{\left(\left|{\sin{\left(\pi x \right)}}\right| \right)}}{\pi}+C$$

Respuesta

$$$\int \cot{\left(\pi x \right)}\, dx = \frac{\ln\left(\left|{\sin{\left(\pi x \right)}}\right|\right)}{\pi} + C$$$A


Please try a new game Rotatly