$$$8 e^{4 x}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$8 e^{4 x}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int 8 e^{4 x}\, dx$$$.

Çözüm

Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=8$$$ ve $$$f{\left(x \right)} = e^{4 x}$$$ ile uygula:

$${\color{red}{\int{8 e^{4 x} d x}}} = {\color{red}{\left(8 \int{e^{4 x} d x}\right)}}$$

$$$u=4 x$$$ olsun.

Böylece $$$du=\left(4 x\right)^{\prime }dx = 4 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{4}$$$ elde ederiz.

Dolayısıyla,

$$8 {\color{red}{\int{e^{4 x} d x}}} = 8 {\color{red}{\int{\frac{e^{u}}{4} d u}}}$$

Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{4}$$$ ve $$$f{\left(u \right)} = e^{u}$$$ ile uygula:

$$8 {\color{red}{\int{\frac{e^{u}}{4} d u}}} = 8 {\color{red}{\left(\frac{\int{e^{u} d u}}{4}\right)}}$$

Üstel fonksiyonun integrali $$$\int{e^{u} d u} = e^{u}$$$:

$$2 {\color{red}{\int{e^{u} d u}}} = 2 {\color{red}{e^{u}}}$$

Hatırlayın ki $$$u=4 x$$$:

$$2 e^{{\color{red}{u}}} = 2 e^{{\color{red}{\left(4 x\right)}}}$$

Dolayısıyla,

$$\int{8 e^{4 x} d x} = 2 e^{4 x}$$

İntegrasyon sabitini ekleyin:

$$\int{8 e^{4 x} d x} = 2 e^{4 x}+C$$

Cevap

$$$\int 8 e^{4 x}\, dx = 2 e^{4 x} + C$$$A


Please try a new game Rotatly