$$$6 y^{2}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int 6 y^{2}\, dy$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$'i $$$c=6$$$ ve $$$f{\left(y \right)} = y^{2}$$$ ile uygula:
$${\color{red}{\int{6 y^{2} d y}}} = {\color{red}{\left(6 \int{y^{2} d y}\right)}}$$
Kuvvet kuralını $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=2$$$ ile uygulayın:
$$6 {\color{red}{\int{y^{2} d y}}}=6 {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=6 {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$
Dolayısıyla,
$$\int{6 y^{2} d y} = 2 y^{3}$$
İntegrasyon sabitini ekleyin:
$$\int{6 y^{2} d y} = 2 y^{3}+C$$
Cevap
$$$\int 6 y^{2}\, dy = 2 y^{3} + C$$$A