$$$\frac{1}{\sqrt{x}}$$$'nin integrali

Hesaplayıcı, adımlarıyla birlikte $$$\frac{1}{\sqrt{x}}$$$ fonksiyonunun integralini/ilkel fonksiyonunu bulacaktır.

İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı

Lütfen $$$dx$$$, $$$dy$$$ vb. diferansiyeller kullanmadan yazın.
Otomatik algılama için boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\int \frac{1}{\sqrt{x}}\, dx$$$.

Çözüm

Kuvvet kuralını $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=- \frac{1}{2}$$$ ile uygulayın:

$${\color{red}{\int{\frac{1}{\sqrt{x}} d x}}}={\color{red}{\int{x^{- \frac{1}{2}} d x}}}={\color{red}{\frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}={\color{red}{\left(2 x^{\frac{1}{2}}\right)}}={\color{red}{\left(2 \sqrt{x}\right)}}$$

Dolayısıyla,

$$\int{\frac{1}{\sqrt{x}} d x} = 2 \sqrt{x}$$

İntegrasyon sabitini ekleyin:

$$\int{\frac{1}{\sqrt{x}} d x} = 2 \sqrt{x}+C$$

Cevap

$$$\int \frac{1}{\sqrt{x}}\, dx = 2 \sqrt{x} + C$$$A


Please try a new game Rotatly