$$$\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}$$$'in türevi
İlgili hesap makinesi: Türev Hesaplayıcı
Girdiniz
Bulun: $$$\frac{d}{dx} \left(\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}\right)$$$.
Çözüm
$$$H{\left(x \right)} = \left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}$$$ olsun.
Her iki tarafın logaritmasını alın: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}\right)$$$.
Logaritmaların özelliklerini kullanarak eşitliğin sağ tarafını yeniden yazın: $$$\ln\left(H{\left(x \right)}\right) = 2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)$$$.
Denklemin her iki tarafının türevini ayrı ayrı alın: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)\right)$$$.
Denklemin sol tarafının türevini alın.
$$$\ln\left(H{\left(x \right)}\right)$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = \ln\left(u\right)$$$ ve $$$g{\left(x \right)} = H{\left(x \right)}$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.
Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$Doğal logaritmanın türevi $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$Eski değişkene geri dön:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$Dolayısıyla, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.
Denklemin sağ tarafının türevini alın.
Toplamın/farkın türevi, türevlerin toplamı/farkıdır:
$${\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right) + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)\right)}$$Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = 2$$$ ve $$$f{\left(x \right)} = \ln\left(x^{3} + 2\right)$$$ ile uygula:
$${\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right) = {\color{red}\left(2 \frac{d}{dx} \left(\ln\left(x^{3} + 2\right)\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)$$Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = 4$$$ ve $$$f{\left(x \right)} = \ln\left(x^{4} + 4\right)$$$ ile uygula:
$${\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)\right)} + 2 \frac{d}{dx} \left(\ln\left(x^{3} + 2\right)\right) = {\color{red}\left(4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right)\right)} + 2 \frac{d}{dx} \left(\ln\left(x^{3} + 2\right)\right)$$$$$\ln\left(x^{3} + 2\right)$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = \ln\left(u\right)$$$ ve $$$g{\left(x \right)} = x^{3} + 2$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.
Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:
$$2 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{3} + 2\right)\right)\right)} + 4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right) = 2 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{3} + 2\right)\right)} + 4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right)$$Doğal logaritmanın türevi $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$$2 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{3} + 2\right) + 4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right) = 2 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{3} + 2\right) + 4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right)$$Eski değişkene geri dön:
$$4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right) + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{{\color{red}\left(u\right)}} = 4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right) + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{{\color{red}\left(x^{3} + 2\right)}}$$$$$\ln\left(x^{4} + 4\right)$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = \ln\left(u\right)$$$ ve $$$g{\left(x \right)} = x^{4} + 4$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.
Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:
$$4 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right)\right)} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = 4 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{4} + 4\right)\right)} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$Doğal logaritmanın türevi $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$$4 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{4} + 4\right) + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = 4 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{4} + 4\right) + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$Eski değişkene geri dön:
$$\frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{{\color{red}\left(u\right)}} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{{\color{red}\left(x^{4} + 4\right)}} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$Toplamın/farkın türevi, türevlerin toplamı/farkıdır:
$$\frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{4} + 4\right)\right)}}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = \frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{4}\right) + \frac{d}{dx} \left(4\right)\right)}}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$Sabitin türevi $$$0$$$:
$$\frac{4 \left({\color{red}\left(\frac{d}{dx} \left(4\right)\right)} + \frac{d}{dx} \left(x^{4}\right)\right)}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = \frac{4 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{4}\right)\right)}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$$$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ şeklindeki kuvvet kuralını $$$n = 4$$$ ile uygula:
$$\frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{4}\right)\right)}}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = \frac{4 {\color{red}\left(4 x^{3}\right)}}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$Toplamın/farkın türevi, türevlerin toplamı/farkıdır:
$$\frac{16 x^{3}}{x^{4} + 4} + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{3} + 2\right)\right)}}{x^{3} + 2} = \frac{16 x^{3}}{x^{4} + 4} + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) + \frac{d}{dx} \left(2\right)\right)}}{x^{3} + 2}$$Sabitin türevi $$$0$$$:
$$\frac{16 x^{3}}{x^{4} + 4} + \frac{2 \left({\color{red}\left(\frac{d}{dx} \left(2\right)\right)} + \frac{d}{dx} \left(x^{3}\right)\right)}{x^{3} + 2} = \frac{16 x^{3}}{x^{4} + 4} + \frac{2 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{3}\right)\right)}{x^{3} + 2}$$$$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ şeklindeki kuvvet kuralını $$$n = 3$$$ ile uygula:
$$\frac{16 x^{3}}{x^{4} + 4} + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)}}{x^{3} + 2} = \frac{16 x^{3}}{x^{4} + 4} + \frac{2 {\color{red}\left(3 x^{2}\right)}}{x^{3} + 2}$$Dolayısıyla, $$$\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)\right) = \frac{16 x^{3}}{x^{4} + 4} + \frac{6 x^{2}}{x^{3} + 2}$$$.
Dolayısıyla, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \frac{16 x^{3}}{x^{4} + 4} + \frac{6 x^{2}}{x^{3} + 2}$$$.
Dolayısıyla, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\frac{16 x^{3}}{x^{4} + 4} + \frac{6 x^{2}}{x^{3} + 2}\right) H{\left(x \right)} = 2 x^{2} \left(x^{3} + 2\right) \left(x^{4} + 4\right)^{3} \left(3 x^{4} + 8 x \left(x^{3} + 2\right) + 12\right).$$$
Cevap
$$$\frac{d}{dx} \left(\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}\right) = 2 x^{2} \left(x^{3} + 2\right) \left(x^{4} + 4\right)^{3} \left(3 x^{4} + 8 x \left(x^{3} + 2\right) + 12\right)$$$A