Derivata di $$$\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}$$$

Il calcolatore calcolerà la derivata di $$$\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}$$$ utilizzando la derivazione logaritmica, con i passaggi mostrati.

Calcolatore correlato: Calcolatore di derivate

Lascia vuoto per il rilevamento automatico.
Lascia vuoto se non ti serve la derivata in un punto specifico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\frac{d}{dx} \left(\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}\right)$$$.

Soluzione

Sia $$$H{\left(x \right)} = \left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}$$$.

Prendi il logaritmo di entrambi i membri: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}\right)$$$.

Riscrivi il membro di destra usando le proprietà dei logaritmi: $$$\ln\left(H{\left(x \right)}\right) = 2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)$$$.

Deriva separatamente entrambi i membri dell'equazione: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)\right)$$$.

Deriva il membro sinistro dell’equazione.

La funzione $$$\ln\left(H{\left(x \right)}\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = H{\left(x \right)}$$$.

Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

Torna alla variabile originale:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

Quindi, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.

Deriva il membro destro dell’equazione.

La derivata di una somma/differenza è la somma/differenza delle derivate:

$${\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right) + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)\right)}$$

Applica la regola del multiplo costante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 2$$$ e $$$f{\left(x \right)} = \ln\left(x^{3} + 2\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right) = {\color{red}\left(2 \frac{d}{dx} \left(\ln\left(x^{3} + 2\right)\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)$$

Applica la regola del multiplo costante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 4$$$ e $$$f{\left(x \right)} = \ln\left(x^{4} + 4\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)\right)} + 2 \frac{d}{dx} \left(\ln\left(x^{3} + 2\right)\right) = {\color{red}\left(4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right)\right)} + 2 \frac{d}{dx} \left(\ln\left(x^{3} + 2\right)\right)$$

La funzione $$$\ln\left(x^{3} + 2\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = x^{3} + 2$$$.

Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$2 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{3} + 2\right)\right)\right)} + 4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right) = 2 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{3} + 2\right)\right)} + 4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right)$$

La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$$2 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{3} + 2\right) + 4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right) = 2 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{3} + 2\right) + 4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right)$$

Torna alla variabile originale:

$$4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right) + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{{\color{red}\left(u\right)}} = 4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right) + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{{\color{red}\left(x^{3} + 2\right)}}$$

La funzione $$$\ln\left(x^{4} + 4\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = x^{4} + 4$$$.

Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$4 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right)\right)} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = 4 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{4} + 4\right)\right)} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$

La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$$4 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{4} + 4\right) + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = 4 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{4} + 4\right) + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$

Torna alla variabile originale:

$$\frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{{\color{red}\left(u\right)}} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{{\color{red}\left(x^{4} + 4\right)}} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$

La derivata di una somma/differenza è la somma/differenza delle derivate:

$$\frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{4} + 4\right)\right)}}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = \frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{4}\right) + \frac{d}{dx} \left(4\right)\right)}}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$

La derivata di una costante è $$$0$$$:

$$\frac{4 \left({\color{red}\left(\frac{d}{dx} \left(4\right)\right)} + \frac{d}{dx} \left(x^{4}\right)\right)}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = \frac{4 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{4}\right)\right)}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$

Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 4$$$:

$$\frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{4}\right)\right)}}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = \frac{4 {\color{red}\left(4 x^{3}\right)}}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$

La derivata di una somma/differenza è la somma/differenza delle derivate:

$$\frac{16 x^{3}}{x^{4} + 4} + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{3} + 2\right)\right)}}{x^{3} + 2} = \frac{16 x^{3}}{x^{4} + 4} + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) + \frac{d}{dx} \left(2\right)\right)}}{x^{3} + 2}$$

La derivata di una costante è $$$0$$$:

$$\frac{16 x^{3}}{x^{4} + 4} + \frac{2 \left({\color{red}\left(\frac{d}{dx} \left(2\right)\right)} + \frac{d}{dx} \left(x^{3}\right)\right)}{x^{3} + 2} = \frac{16 x^{3}}{x^{4} + 4} + \frac{2 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{3}\right)\right)}{x^{3} + 2}$$

Applica la regola della potenza $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 3$$$:

$$\frac{16 x^{3}}{x^{4} + 4} + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)}}{x^{3} + 2} = \frac{16 x^{3}}{x^{4} + 4} + \frac{2 {\color{red}\left(3 x^{2}\right)}}{x^{3} + 2}$$

Quindi, $$$\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)\right) = \frac{16 x^{3}}{x^{4} + 4} + \frac{6 x^{2}}{x^{3} + 2}$$$.

Pertanto, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \frac{16 x^{3}}{x^{4} + 4} + \frac{6 x^{2}}{x^{3} + 2}$$$.

Pertanto, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\frac{16 x^{3}}{x^{4} + 4} + \frac{6 x^{2}}{x^{3} + 2}\right) H{\left(x \right)} = 2 x^{2} \left(x^{3} + 2\right) \left(x^{4} + 4\right)^{3} \left(3 x^{4} + 8 x \left(x^{3} + 2\right) + 12\right).$$$

Risposta

$$$\frac{d}{dx} \left(\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}\right) = 2 x^{2} \left(x^{3} + 2\right) \left(x^{4} + 4\right)^{3} \left(3 x^{4} + 8 x \left(x^{3} + 2\right) + 12\right)$$$A


Please try a new game Rotatly