Derivada de $$$\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}$$$

La calculadora hallará la derivada de $$$\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}$$$ utilizando la diferenciación logarítmica, mostrando los pasos.

Calculadora relacionada: Calculadora de derivadas

Deje en blanco para la detección automática.
Déjelo en blanco si no necesita la derivada en un punto específico.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\frac{d}{dx} \left(\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}\right)$$$.

Solución

Sea $$$H{\left(x \right)} = \left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}$$$.

Toma el logaritmo en ambos lados: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}\right)$$$.

Reescribe el miembro derecho usando las propiedades de los logaritmos: $$$\ln\left(H{\left(x \right)}\right) = 2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)$$$.

Deriva ambos lados de la ecuación por separado: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)\right)$$$.

Deriva el miembro izquierdo de la ecuación.

La función $$$\ln\left(H{\left(x \right)}\right)$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \ln\left(u\right)$$$ y $$$g{\left(x \right)} = H{\left(x \right)}$$$.

Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

La derivada del logaritmo natural es $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

Volver a la variable original:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

Por lo tanto, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.

Deriva el miembro derecho de la ecuación.

La derivada de una suma/diferencia es la suma/diferencia de las derivadas:

$${\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right) + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)\right)}$$

Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 2$$$ y $$$f{\left(x \right)} = \ln\left(x^{3} + 2\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right) = {\color{red}\left(2 \frac{d}{dx} \left(\ln\left(x^{3} + 2\right)\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)$$

La función $$$\ln\left(x^{3} + 2\right)$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \ln\left(u\right)$$$ y $$$g{\left(x \right)} = x^{3} + 2$$$.

Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$2 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{3} + 2\right)\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right) = 2 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{3} + 2\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)$$

La derivada del logaritmo natural es $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$$2 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{3} + 2\right) + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right) = 2 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{3} + 2\right) + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)$$

Volver a la variable original:

$$\frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right) + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{{\color{red}\left(u\right)}} = \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right) + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{{\color{red}\left(x^{3} + 2\right)}}$$

La derivada de una suma/diferencia es la suma/diferencia de las derivadas:

$$\frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right) + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{3} + 2\right)\right)}}{x^{3} + 2} = \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right) + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) + \frac{d}{dx} \left(2\right)\right)}}{x^{3} + 2}$$

Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 3$$$:

$$\frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right) + \frac{2 \left({\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} = \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right) + \frac{2 \left({\color{red}\left(3 x^{2}\right)} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2}$$

Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 4$$$ y $$$f{\left(x \right)} = \ln\left(x^{4} + 4\right)$$$:

$$\frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + {\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)\right)} = \frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + {\color{red}\left(4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right)\right)}$$

La función $$$\ln\left(x^{4} + 4\right)$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \ln\left(u\right)$$$ y $$$g{\left(x \right)} = x^{4} + 4$$$.

Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$\frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + 4 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right)\right)} = \frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + 4 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{4} + 4\right)\right)}$$

La derivada del logaritmo natural es $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$$\frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + 4 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{4} + 4\right) = \frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + 4 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{4} + 4\right)$$

Volver a la variable original:

$$\frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{{\color{red}\left(u\right)}} = \frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{{\color{red}\left(x^{4} + 4\right)}}$$

La derivada de una suma/diferencia es la suma/diferencia de las derivadas:

$$\frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + \frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{4} + 4\right)\right)}}{x^{4} + 4} = \frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + \frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{4}\right) + \frac{d}{dx} \left(4\right)\right)}}{x^{4} + 4}$$

La derivada de una constante es $$$0$$$:

$$\frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + \frac{4 \left({\color{red}\left(\frac{d}{dx} \left(4\right)\right)} + \frac{d}{dx} \left(x^{4}\right)\right)}{x^{4} + 4} = \frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + \frac{4 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{4}\right)\right)}{x^{4} + 4}$$

Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 4$$$:

$$\frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + \frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{4}\right)\right)}}{x^{4} + 4} = \frac{2 \left(3 x^{2} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} + \frac{4 {\color{red}\left(4 x^{3}\right)}}{x^{4} + 4}$$

La derivada de una constante es $$$0$$$:

$$\frac{16 x^{3}}{x^{4} + 4} + \frac{2 \left(3 x^{2} + {\color{red}\left(\frac{d}{dx} \left(2\right)\right)}\right)}{x^{3} + 2} = \frac{16 x^{3}}{x^{4} + 4} + \frac{2 \left(3 x^{2} + {\color{red}\left(0\right)}\right)}{x^{3} + 2}$$

Por lo tanto, $$$\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)\right) = \frac{16 x^{3}}{x^{4} + 4} + \frac{6 x^{2}}{x^{3} + 2}$$$.

Por lo tanto, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \frac{16 x^{3}}{x^{4} + 4} + \frac{6 x^{2}}{x^{3} + 2}$$$.

Por lo tanto, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\frac{16 x^{3}}{x^{4} + 4} + \frac{6 x^{2}}{x^{3} + 2}\right) H{\left(x \right)} = 2 x^{2} \left(x^{3} + 2\right) \left(x^{4} + 4\right)^{3} \left(3 x^{4} + 8 x \left(x^{3} + 2\right) + 12\right).$$$

Respuesta

$$$\frac{d}{dx} \left(\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}\right) = 2 x^{2} \left(x^{3} + 2\right) \left(x^{4} + 4\right)^{3} \left(3 x^{4} + 8 x \left(x^{3} + 2\right) + 12\right)$$$A


Please try a new game Rotatly