Derivado de $$$\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}$$$
Calculadora relacionada: Calculadora de derivados
Tu aportación
Encuentra $$$\frac{d}{dx} \left(\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}\right)$$$.
Solución
Sea $$$H{\left(x \right)} = \left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}$$$.
Toma el logaritmo de ambos lados: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}\right)$$$.
Vuelve a escribir la RHS usando las propiedades de los logaritmos: $$$\ln\left(H{\left(x \right)}\right) = 2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)$$$.
Derive por separado ambos lados de la ecuación: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)\right)$$$.
Diferenciar el LHS de la ecuación.
La función $$$\ln\left(H{\left(x \right)}\right)$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \ln\left(u\right)$$$ y $$$g{\left(x \right)} = H{\left(x \right)}$$$.
Aplicar la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$La derivada del logaritmo natural es $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$Vuelva a la variable anterior:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$Por lo tanto, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.
Derive la RHS de la ecuación.
La derivada de una suma/diferencia es la suma/diferencia de derivadas:
$${\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right) + \frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)\right)}$$Aplique la regla del múltiplo constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 4$$$ y $$$f{\left(x \right)} = \ln\left(x^{4} + 4\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x^{4} + 4\right)\right)\right)} + \frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right) = {\color{red}\left(4 \frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right)\right)} + \frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right)$$La función $$$\ln\left(x^{4} + 4\right)$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \ln\left(u\right)$$$ y $$$g{\left(x \right)} = x^{4} + 4$$$.
Aplicar la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$4 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{4} + 4\right)\right)\right)} + \frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right) = 4 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{4} + 4\right)\right)} + \frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right)$$La derivada del logaritmo natural es $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$$4 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{4} + 4\right) + \frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right) = 4 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{4} + 4\right) + \frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right)$$Vuelva a la variable anterior:
$$\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right) + \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{{\color{red}\left(u\right)}} = \frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right) + \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{{\color{red}\left(x^{4} + 4\right)}}$$Aplique la regla del múltiplo constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = 2$$$ y $$$f{\left(x \right)} = \ln\left(x^{3} + 2\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right)\right)\right)} + \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{x^{4} + 4} = {\color{red}\left(2 \frac{d}{dx} \left(\ln\left(x^{3} + 2\right)\right)\right)} + \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{x^{4} + 4}$$La función $$$\ln\left(x^{3} + 2\right)$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \ln\left(u\right)$$$ y $$$g{\left(x \right)} = x^{3} + 2$$$.
Aplicar la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$2 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x^{3} + 2\right)\right)\right)} + \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{x^{4} + 4} = 2 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(x^{3} + 2\right)\right)} + \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{x^{4} + 4}$$La derivada del logaritmo natural es $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$$2 {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(x^{3} + 2\right) + \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{x^{4} + 4} = 2 {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(x^{3} + 2\right) + \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{x^{4} + 4}$$Vuelva a la variable anterior:
$$\frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{{\color{red}\left(u\right)}} + \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{x^{4} + 4} = \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{{\color{red}\left(x^{3} + 2\right)}} + \frac{4 \frac{d}{dx} \left(x^{4} + 4\right)}{x^{4} + 4}$$La derivada de una suma/diferencia es la suma/diferencia de derivadas:
$$\frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{4} + 4\right)\right)}}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = \frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{4}\right) + \frac{d}{dx} \left(4\right)\right)}}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$La derivada de una constante es $$$0$$$:
$$\frac{4 \left({\color{red}\left(\frac{d}{dx} \left(4\right)\right)} + \frac{d}{dx} \left(x^{4}\right)\right)}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = \frac{4 \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{4}\right)\right)}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$Aplique la regla de potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 4$$$:
$$\frac{4 {\color{red}\left(\frac{d}{dx} \left(x^{4}\right)\right)}}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2} = \frac{4 {\color{red}\left(4 x^{3}\right)}}{x^{4} + 4} + \frac{2 \frac{d}{dx} \left(x^{3} + 2\right)}{x^{3} + 2}$$La derivada de una suma/diferencia es la suma/diferencia de derivadas:
$$\frac{16 x^{3}}{x^{4} + 4} + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{3} + 2\right)\right)}}{x^{3} + 2} = \frac{16 x^{3}}{x^{4} + 4} + \frac{2 {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) + \frac{d}{dx} \left(2\right)\right)}}{x^{3} + 2}$$Aplique la regla de potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 3$$$:
$$\frac{16 x^{3}}{x^{4} + 4} + \frac{2 \left({\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2} = \frac{16 x^{3}}{x^{4} + 4} + \frac{2 \left({\color{red}\left(3 x^{2}\right)} + \frac{d}{dx} \left(2\right)\right)}{x^{3} + 2}$$La derivada de una constante es $$$0$$$:
$$\frac{16 x^{3}}{x^{4} + 4} + \frac{2 \left(3 x^{2} + {\color{red}\left(\frac{d}{dx} \left(2\right)\right)}\right)}{x^{3} + 2} = \frac{16 x^{3}}{x^{4} + 4} + \frac{2 \left(3 x^{2} + {\color{red}\left(0\right)}\right)}{x^{3} + 2}$$Por lo tanto, $$$\frac{d}{dx} \left(2 \ln\left(x^{3} + 2\right) + 4 \ln\left(x^{4} + 4\right)\right) = \frac{16 x^{3}}{x^{4} + 4} + \frac{6 x^{2}}{x^{3} + 2}$$$.
Por lo tanto, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = \frac{16 x^{3}}{x^{4} + 4} + \frac{6 x^{2}}{x^{3} + 2}$$$.
Por lo tanto, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(\frac{16 x^{3}}{x^{4} + 4} + \frac{6 x^{2}}{x^{3} + 2}\right) H{\left(x \right)} = 2 x^{2} \left(x^{3} + 2\right) \left(x^{4} + 4\right)^{3} \left(3 x^{4} + 8 x \left(x^{3} + 2\right) + 12\right).$$$
Respuesta
$$$\frac{d}{dx} \left(\left(x^{3} + 2\right)^{2} \left(x^{4} + 4\right)^{4}\right) = 2 x^{2} \left(x^{3} + 2\right) \left(x^{4} + 4\right)^{3} \left(3 x^{4} + 8 x \left(x^{3} + 2\right) + 12\right)$$$A