$$$\sqrt{x} + \frac{5}{\sqrt{x}}$$$'in türevi

Hesaplayıcı, $$$\sqrt{x} + \frac{5}{\sqrt{x}}$$$ fonksiyonunun türevini adımlarıyla birlikte bulur.

İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı

Otomatik algılama için boş bırakın.
Belirli bir noktadaki türeve ihtiyacınız yoksa boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

Bulun: $$$\frac{d}{dx} \left(\sqrt{x} + \frac{5}{\sqrt{x}}\right)$$$.

Çözüm

Toplamın/farkın türevi, türevlerin toplamı/farkıdır:

$${\color{red}\left(\frac{d}{dx} \left(\sqrt{x} + \frac{5}{\sqrt{x}}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right) + \frac{d}{dx} \left(\frac{5}{\sqrt{x}}\right)\right)}$$

$$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ şeklindeki kuvvet kuralını $$$n = \frac{1}{2}$$$ ile uygula:

$${\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)} + \frac{d}{dx} \left(\frac{5}{\sqrt{x}}\right) = {\color{red}\left(\frac{1}{2 \sqrt{x}}\right)} + \frac{d}{dx} \left(\frac{5}{\sqrt{x}}\right)$$

Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = 5$$$ ve $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$ ile uygula:

$${\color{red}\left(\frac{d}{dx} \left(\frac{5}{\sqrt{x}}\right)\right)} + \frac{1}{2 \sqrt{x}} = {\color{red}\left(5 \frac{d}{dx} \left(\frac{1}{\sqrt{x}}\right)\right)} + \frac{1}{2 \sqrt{x}}$$

$$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ şeklindeki kuvvet kuralını $$$n = - \frac{1}{2}$$$ ile uygula:

$$5 {\color{red}\left(\frac{d}{dx} \left(\frac{1}{\sqrt{x}}\right)\right)} + \frac{1}{2 \sqrt{x}} = 5 {\color{red}\left(- \frac{1}{2 x^{\frac{3}{2}}}\right)} + \frac{1}{2 \sqrt{x}}$$

Sadeleştirin:

$$\frac{1}{2 \sqrt{x}} - \frac{5}{2 x^{\frac{3}{2}}} = \frac{x - 5}{2 x^{\frac{3}{2}}}$$

Dolayısıyla, $$$\frac{d}{dx} \left(\sqrt{x} + \frac{5}{\sqrt{x}}\right) = \frac{x - 5}{2 x^{\frac{3}{2}}}$$$.

Cevap

$$$\frac{d}{dx} \left(\sqrt{x} + \frac{5}{\sqrt{x}}\right) = \frac{x - 5}{2 x^{\frac{3}{2}}}$$$A


Please try a new game Rotatly