$$$\frac{\sqrt{2} x}{4}$$$'in türevi
İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı
Girdiniz
Bulun: $$$\frac{d}{dx} \left(\frac{\sqrt{2} x}{4}\right)$$$.
Çözüm
Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = \frac{\sqrt{2}}{4}$$$ ve $$$f{\left(x \right)} = x$$$ ile uygula:
$${\color{red}\left(\frac{d}{dx} \left(\frac{\sqrt{2} x}{4}\right)\right)} = {\color{red}\left(\frac{\sqrt{2}}{4} \frac{d}{dx} \left(x\right)\right)}$$Kuvvet kuralını ($$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$) $$$n = 1$$$ için uygulayın, başka bir deyişle, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{\sqrt{2} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{4} = \frac{\sqrt{2} {\color{red}\left(1\right)}}{4}$$Dolayısıyla, $$$\frac{d}{dx} \left(\frac{\sqrt{2} x}{4}\right) = \frac{\sqrt{2}}{4}$$$.
Cevap
$$$\frac{d}{dx} \left(\frac{\sqrt{2} x}{4}\right) = \frac{\sqrt{2}}{4}$$$A