$$$x$$$'e göre $$$\sin{\left(x y \right)}$$$'in türevi
İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı
Girdiniz
Bulun: $$$\frac{d}{dx} \left(\sin{\left(x y \right)}\right)$$$.
Çözüm
$$$\sin{\left(x y \right)}$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ve $$$g{\left(x \right)} = x y$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.
Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x y \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(x y\right)\right)}$$Sinüsün türevi $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x y\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(x y\right)$$Eski değişkene geri dön:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x y\right) = \cos{\left({\color{red}\left(x y\right)} \right)} \frac{d}{dx} \left(x y\right)$$Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = y$$$ ve $$$f{\left(x \right)} = x$$$ ile uygula:
$$\cos{\left(x y \right)} {\color{red}\left(\frac{d}{dx} \left(x y\right)\right)} = \cos{\left(x y \right)} {\color{red}\left(y \frac{d}{dx} \left(x\right)\right)}$$Kuvvet kuralını ($$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$) $$$n = 1$$$ için uygulayın, başka bir deyişle, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$y \cos{\left(x y \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = y \cos{\left(x y \right)} {\color{red}\left(1\right)}$$Dolayısıyla, $$$\frac{d}{dx} \left(\sin{\left(x y \right)}\right) = y \cos{\left(x y \right)}$$$.
Cevap
$$$\frac{d}{dx} \left(\sin{\left(x y \right)}\right) = y \cos{\left(x y \right)}$$$A