$$$x$$$'e göre $$$\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}$$$'in türevi
İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı
Girdiniz
Bulun: $$$\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right)$$$.
Çözüm
Toplamın/farkın türevi, türevlerin toplamı/farkıdır:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right) - \frac{d}{dx} \left(\sin{\left(x \right)} \cos{\left(a \right)}\right)\right)}$$Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = \cos{\left(a \right)}$$$ ve $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ ile uygula:
$$- {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)} \cos{\left(a \right)}\right)\right)} + \frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right) = - {\color{red}\left(\cos{\left(a \right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right)$$Sinüsün türevi $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$$- \cos{\left(a \right)} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right) = - \cos{\left(a \right)} {\color{red}\left(\cos{\left(x \right)}\right)} + \frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right)$$Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = \sin{\left(a \right)}$$$ ve $$$f{\left(x \right)} = \cos{\left(x \right)}$$$ ile uygula:
$$- \cos{\left(a \right)} \cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)}\right)\right)} = - \cos{\left(a \right)} \cos{\left(x \right)} + {\color{red}\left(\sin{\left(a \right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}$$Kosinüsün türevi $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:
$$\sin{\left(a \right)} {\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} - \cos{\left(a \right)} \cos{\left(x \right)} = \sin{\left(a \right)} {\color{red}\left(- \sin{\left(x \right)}\right)} - \cos{\left(a \right)} \cos{\left(x \right)}$$Sadeleştirin:
$$- \sin{\left(a \right)} \sin{\left(x \right)} - \cos{\left(a \right)} \cos{\left(x \right)} = - \cos{\left(a - x \right)}$$Dolayısıyla, $$$\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) = - \cos{\left(a - x \right)}$$$.
Cevap
$$$\frac{d}{dx} \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) = - \cos{\left(a - x \right)}$$$A