$$$\ln\left(x^{3}\right)$$$'in türevi
İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı
Girdiniz
Bulun: $$$\frac{d}{dx} \left(\ln\left(x^{3}\right)\right)$$$.
Çözüm
$$$\ln\left(x^{3}\right)$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = \ln\left(u\right)$$$ ve $$$g{\left(x \right)} = x^{3}$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.
Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:
$$\frac{d}{dx} \left(3 \ln\left(x\right)\right) = \frac{d}{dx} \left(3 \ln\left(x\right)\right)$$Doğal logaritmanın türevi $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$$\frac{d}{dx} \left(3 \ln\left(x\right)\right) = \frac{d}{dx} \left(3 \ln\left(x\right)\right)$$Eski değişkene geri dön:
$$\frac{d}{dx} \left(3 \ln\left(x\right)\right) = \frac{d}{dx} \left(3 \ln\left(x\right)\right)$$Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = 3$$$ ve $$$f{\left(x \right)} = \ln\left(x\right)$$$ ile uygula:
$${\color{red}\left(\frac{d}{dx} \left(3 \ln\left(x\right)\right)\right)} = {\color{red}\left(3 \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$Doğal logaritmanın türevi $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$3 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = 3 {\color{red}\left(\frac{1}{x}\right)}$$Dolayısıyla, $$$\frac{d}{dx} \left(\ln\left(x^{3}\right)\right) = \frac{3}{x}$$$.
Cevap
$$$\frac{d}{dx} \left(\ln\left(x^{3}\right)\right) = \frac{3}{x}$$$A