$$$x$$$'e göre $$$e^{x} + \sin{\left(y z \right)}$$$'in türevi
İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı
Girdiniz
Bulun: $$$\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right)$$$.
Çözüm
Toplamın/farkın türevi, türevlerin toplamı/farkıdır:
$${\color{red}\left(\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(e^{x}\right) + \frac{d}{dx} \left(\sin{\left(y z \right)}\right)\right)}$$Sabitin türevi $$$0$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(y z \right)}\right)\right)} + \frac{d}{dx} \left(e^{x}\right) = {\color{red}\left(0\right)} + \frac{d}{dx} \left(e^{x}\right)$$Üstel fonksiyonun türevi $$$\frac{d}{dx} \left(e^{x}\right) = e^{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(e^{x}\right)\right)} = {\color{red}\left(e^{x}\right)}$$Dolayısıyla, $$$\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right) = e^{x}$$$.
Cevap
$$$\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right) = e^{x}$$$A
Please try a new game Rotatly