$$$e^{- x} \sin{\left(x \right)}$$$ fonksiyonunun $$$x = c$$$ noktasındaki türevi

Hesaplayıcı, adımları göstererek $$$e^{- x} \sin{\left(x \right)}$$$ fonksiyonunun $$$x = c$$$ noktasındaki türevini bulur.

İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı

Otomatik algılama için boş bırakın.
Belirli bir noktadaki türeve ihtiyacınız yoksa boş bırakın.

Hesap makinesi bir şeyi hesaplayamadıysa, bir hata tespit ettiyseniz veya bir öneriniz/geri bildiriminiz varsa, lütfen bizimle iletişime geçin.

Girdiniz

$$$\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)$$$'i bulun ve $$$x = c$$$ noktasında değerlendirin.

Çözüm

Çarpım kuralını $$$f{\left(x \right)} = e^{- x}$$$ ve $$$g{\left(x \right)} = \sin{\left(x \right)}$$$ ile $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ kullanarak uygulayın:

$${\color{red}\left(\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(e^{- x}\right) \sin{\left(x \right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$

$$$e^{- x}$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = e^{u}$$$ ve $$$g{\left(x \right)} = - x$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.

Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:

$$\sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(e^{- x}\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = \sin{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(- x\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

Üstel fonksiyonun türevi $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:

$$\sin{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = \sin{\left(x \right)} {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

Eski değişkene geri dön:

$$e^{{\color{red}\left(u\right)}} \sin{\left(x \right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = e^{{\color{red}\left(- x\right)}} \sin{\left(x \right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = -1$$$ ve $$$f{\left(x \right)} = x$$$ ile uygula:

$$e^{- x} \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(- x\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = e^{- x} \sin{\left(x \right)} {\color{red}\left(- \frac{d}{dx} \left(x\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

Sinüsün türevi $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$$- e^{- x} \sin{\left(x \right)} \frac{d}{dx} \left(x\right) + e^{- x} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} = - e^{- x} \sin{\left(x \right)} \frac{d}{dx} \left(x\right) + e^{- x} {\color{red}\left(\cos{\left(x \right)}\right)}$$

Kuvvet kuralını ($$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$) $$$n = 1$$$ için uygulayın, başka bir deyişle, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- e^{- x} \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + e^{- x} \cos{\left(x \right)} = - e^{- x} \sin{\left(x \right)} {\color{red}\left(1\right)} + e^{- x} \cos{\left(x \right)}$$

Sadeleştirin:

$$- e^{- x} \sin{\left(x \right)} + e^{- x} \cos{\left(x \right)} = \sqrt{2} e^{- x} \cos{\left(x + \frac{\pi}{4} \right)}$$

Dolayısıyla, $$$\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right) = \sqrt{2} e^{- x} \cos{\left(x + \frac{\pi}{4} \right)}$$$.

Son olarak, türevi $$$x = c$$$ noktasında değerlendirin.

$$$\left(\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)\right)|_{\left(x = c\right)} = \sqrt{2} e^{- c} \cos{\left(c + \frac{\pi}{4} \right)}$$$

Cevap

$$$\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right) = \sqrt{2} e^{- x} \cos{\left(x + \frac{\pi}{4} \right)}$$$A

$$$\left(\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)\right)|_{\left(x = c\right)} = \sqrt{2} e^{- c} \cos{\left(c + \frac{\pi}{4} \right)}\approx 1.414213562373095 e^{- c} \cos{\left(c + \frac{\pi}{4} \right)}$$$A


Please try a new game Rotatly