$$$e^{- 4 x}$$$'in türevi
İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı
Girdiniz
Bulun: $$$\frac{d}{dx} \left(e^{- 4 x}\right)$$$.
Çözüm
$$$e^{- 4 x}$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = e^{u}$$$ ve $$$g{\left(x \right)} = - 4 x$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.
Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:
$${\color{red}\left(\frac{d}{dx} \left(e^{- 4 x}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(- 4 x\right)\right)}$$Üstel fonksiyonun türevi $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(- 4 x\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(- 4 x\right)$$Eski değişkene geri dön:
$$e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(- 4 x\right) = e^{{\color{red}\left(- 4 x\right)}} \frac{d}{dx} \left(- 4 x\right)$$Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = -4$$$ ve $$$f{\left(x \right)} = x$$$ ile uygula:
$$e^{- 4 x} {\color{red}\left(\frac{d}{dx} \left(- 4 x\right)\right)} = e^{- 4 x} {\color{red}\left(- 4 \frac{d}{dx} \left(x\right)\right)}$$Kuvvet kuralını ($$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$) $$$n = 1$$$ için uygulayın, başka bir deyişle, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- 4 e^{- 4 x} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = - 4 e^{- 4 x} {\color{red}\left(1\right)}$$Dolayısıyla, $$$\frac{d}{dx} \left(e^{- 4 x}\right) = - 4 e^{- 4 x}$$$.
Cevap
$$$\frac{d}{dx} \left(e^{- 4 x}\right) = - 4 e^{- 4 x}$$$A