$$$\operatorname{atan}{\left(4 x \right)}$$$'in türevi
İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı
Girdiniz
Bulun: $$$\frac{d}{dx} \left(\operatorname{atan}{\left(4 x \right)}\right)$$$.
Çözüm
$$$\operatorname{atan}{\left(4 x \right)}$$$ fonksiyonu, iki fonksiyon $$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$ ve $$$g{\left(x \right)} = 4 x$$$'nin $$$f{\left(g{\left(x \right)} \right)}$$$ bileşimidir.
Zincir kuralını $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ uygulayın:
$${\color{red}\left(\frac{d}{dx} \left(\operatorname{atan}{\left(4 x \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right) \frac{d}{dx} \left(4 x\right)\right)}$$Ark tanjantın türevi $$$\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right) = \frac{1}{u^{2} + 1}$$$:
$${\color{red}\left(\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right)\right)} \frac{d}{dx} \left(4 x\right) = {\color{red}\left(\frac{1}{u^{2} + 1}\right)} \frac{d}{dx} \left(4 x\right)$$Eski değişkene geri dön:
$$\frac{\frac{d}{dx} \left(4 x\right)}{{\color{red}\left(u\right)}^{2} + 1} = \frac{\frac{d}{dx} \left(4 x\right)}{{\color{red}\left(4 x\right)}^{2} + 1}$$Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = 4$$$ ve $$$f{\left(x \right)} = x$$$ ile uygula:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(4 x\right)\right)}}{16 x^{2} + 1} = \frac{{\color{red}\left(4 \frac{d}{dx} \left(x\right)\right)}}{16 x^{2} + 1}$$Kuvvet kuralını ($$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$) $$$n = 1$$$ için uygulayın, başka bir deyişle, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{4 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{16 x^{2} + 1} = \frac{4 {\color{red}\left(1\right)}}{16 x^{2} + 1}$$Dolayısıyla, $$$\frac{d}{dx} \left(\operatorname{atan}{\left(4 x \right)}\right) = \frac{4}{16 x^{2} + 1}$$$.
Cevap
$$$\frac{d}{dx} \left(\operatorname{atan}{\left(4 x \right)}\right) = \frac{4}{16 x^{2} + 1}$$$A