$$$2 x + 2^{\frac{2}{3}}$$$'in türevi
İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı
Girdiniz
Bulun: $$$\frac{d}{dx} \left(2 x + 2^{\frac{2}{3}}\right)$$$.
Çözüm
Toplamın/farkın türevi, türevlerin toplamı/farkıdır:
$${\color{red}\left(\frac{d}{dx} \left(2 x + 2^{\frac{2}{3}}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(2 x\right) + \frac{d}{dx} \left(2^{\frac{2}{3}}\right)\right)}$$Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = 2$$$ ve $$$f{\left(x \right)} = x$$$ ile uygula:
$${\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} + \frac{d}{dx} \left(2^{\frac{2}{3}}\right) = {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(2^{\frac{2}{3}}\right)$$Kuvvet kuralını ($$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$) $$$n = 1$$$ için uygulayın, başka bir deyişle, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$2 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(2^{\frac{2}{3}}\right) = 2 {\color{red}\left(1\right)} + \frac{d}{dx} \left(2^{\frac{2}{3}}\right)$$Sabitin türevi $$$0$$$:
$${\color{red}\left(\frac{d}{dx} \left(2^{\frac{2}{3}}\right)\right)} + 2 = {\color{red}\left(0\right)} + 2$$Dolayısıyla, $$$\frac{d}{dx} \left(2 x + 2^{\frac{2}{3}}\right) = 2$$$.
Cevap
$$$\frac{d}{dx} \left(2 x + 2^{\frac{2}{3}}\right) = 2$$$A