$$$- \sqrt{3} x + \sqrt{2} x$$$'in türevi
İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı
Girdiniz
Bulun: $$$\frac{d}{dx} \left(- \sqrt{3} x + \sqrt{2} x\right)$$$.
Çözüm
Toplamın/farkın türevi, türevlerin toplamı/farkıdır:
$${\color{red}\left(\frac{d}{dx} \left(- \sqrt{3} x + \sqrt{2} x\right)\right)} = {\color{red}\left(- \frac{d}{dx} \left(\sqrt{3} x\right) + \frac{d}{dx} \left(\sqrt{2} x\right)\right)}$$Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = \sqrt{3}$$$ ve $$$f{\left(x \right)} = x$$$ ile uygula:
$$- {\color{red}\left(\frac{d}{dx} \left(\sqrt{3} x\right)\right)} + \frac{d}{dx} \left(\sqrt{2} x\right) = - {\color{red}\left(\sqrt{3} \frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(\sqrt{2} x\right)$$Kuvvet kuralını ($$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$) $$$n = 1$$$ için uygulayın, başka bir deyişle, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- \sqrt{3} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(\sqrt{2} x\right) = - \sqrt{3} {\color{red}\left(1\right)} + \frac{d}{dx} \left(\sqrt{2} x\right)$$Sabit çarpan kuralını $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ $$$c = \sqrt{2}$$$ ve $$$f{\left(x \right)} = x$$$ ile uygula:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{2} x\right)\right)} - \sqrt{3} = {\color{red}\left(\sqrt{2} \frac{d}{dx} \left(x\right)\right)} - \sqrt{3}$$Kuvvet kuralını ($$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$) $$$n = 1$$$ için uygulayın, başka bir deyişle, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\sqrt{2} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} - \sqrt{3} = \sqrt{2} {\color{red}\left(1\right)} - \sqrt{3}$$Dolayısıyla, $$$\frac{d}{dx} \left(- \sqrt{3} x + \sqrt{2} x\right) = - \sqrt{3} + \sqrt{2}$$$.
Cevap
$$$\frac{d}{dx} \left(- \sqrt{3} x + \sqrt{2} x\right) = - \sqrt{3} + \sqrt{2}$$$A