$$$- \frac{\sin{\left(t \right)}}{2}$$$'in türevi
İlgili hesaplayıcılar: Logaritmik Türev Hesaplayıcı, Adım Adım Örtük Türev Alma Hesaplayıcısı
Girdiniz
Bulun: $$$\frac{d}{dt} \left(- \frac{\sin{\left(t \right)}}{2}\right)$$$.
Çözüm
Sabit çarpan kuralını $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ $$$c = - \frac{1}{2}$$$ ve $$$f{\left(t \right)} = \sin{\left(t \right)}$$$ ile uygula:
$${\color{red}\left(\frac{d}{dt} \left(- \frac{\sin{\left(t \right)}}{2}\right)\right)} = {\color{red}\left(- \frac{\frac{d}{dt} \left(\sin{\left(t \right)}\right)}{2}\right)}$$Sinüsün türevi $$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:
$$- \frac{{\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}}{2} = - \frac{{\color{red}\left(\cos{\left(t \right)}\right)}}{2}$$Dolayısıyla, $$$\frac{d}{dt} \left(- \frac{\sin{\left(t \right)}}{2}\right) = - \frac{\cos{\left(t \right)}}{2}$$$.
Cevap
$$$\frac{d}{dt} \left(- \frac{\sin{\left(t \right)}}{2}\right) = - \frac{\cos{\left(t \right)}}{2}$$$A