Derivatan av $$$x^{8} - 33$$$

Kalkylatorn beräknar derivatan av $$$x^{8} - 33$$$ och visar stegen.

Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d}{dx} \left(x^{8} - 33\right)$$$.

Lösning

Derivatan av en summa/differens är summan/differensen av derivatorna:

$${\color{red}\left(\frac{d}{dx} \left(x^{8} - 33\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{8}\right) - \frac{d}{dx} \left(33\right)\right)}$$

Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 8$$$:

$${\color{red}\left(\frac{d}{dx} \left(x^{8}\right)\right)} - \frac{d}{dx} \left(33\right) = {\color{red}\left(8 x^{7}\right)} - \frac{d}{dx} \left(33\right)$$

Derivatan av en konstant är $$$0$$$:

$$8 x^{7} - {\color{red}\left(\frac{d}{dx} \left(33\right)\right)} = 8 x^{7} - {\color{red}\left(0\right)}$$

Alltså, $$$\frac{d}{dx} \left(x^{8} - 33\right) = 8 x^{7}$$$.

Svar

$$$\frac{d}{dx} \left(x^{8} - 33\right) = 8 x^{7}$$$A


Please try a new game Rotatly