Derivatan av $$$x^{2} + 2 x$$$
Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg
Din inmatning
Bestäm $$$\frac{d}{dx} \left(x^{2} + 2 x\right)$$$.
Lösning
Derivatan av en summa/differens är summan/differensen av derivatorna:
$${\color{red}\left(\frac{d}{dx} \left(x^{2} + 2 x\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(2 x\right)\right)}$$Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 2$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(2 x\right) = {\color{red}\left(2 x\right)} + \frac{d}{dx} \left(2 x\right)$$Tillämpa konstantfaktorregeln $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ med $$$c = 2$$$ och $$$f{\left(x \right)} = x$$$:
$$2 x + {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} = 2 x + {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)}$$Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$2 x + 2 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 2 x + 2 {\color{red}\left(1\right)}$$Alltså, $$$\frac{d}{dx} \left(x^{2} + 2 x\right) = 2 x + 2$$$.
Svar
$$$\frac{d}{dx} \left(x^{2} + 2 x\right) = 2 x + 2$$$A