Derivatan av $$$\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$

Kalkylatorn beräknar derivatan av $$$\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$ och visar stegen.

Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d}{dx} \left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)$$$.

Lösning

Funktionen $$$\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$$ är sammansättningen $$$f{\left(g{\left(x \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = \tan{\left(u \right)}$$$ och $$$g{\left(x \right)} = \frac{x}{2} + \frac{\pi}{4}$$$.

Tillämpa kedjeregeln $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\tan{\left(u \right)}\right) \frac{d}{dx} \left(\frac{x}{2} + \frac{\pi}{4}\right)\right)}$$

Derivatan av tangens är $$$\frac{d}{du} \left(\tan{\left(u \right)}\right) = \sec^{2}{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\tan{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{x}{2} + \frac{\pi}{4}\right) = {\color{red}\left(\sec^{2}{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{x}{2} + \frac{\pi}{4}\right)$$

Återgå till den ursprungliga variabeln:

$$\sec^{2}{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{x}{2} + \frac{\pi}{4}\right) = \sec^{2}{\left({\color{red}\left(\frac{x}{2} + \frac{\pi}{4}\right)} \right)} \frac{d}{dx} \left(\frac{x}{2} + \frac{\pi}{4}\right)$$

Derivatan av en summa/differens är summan/differensen av derivatorna:

$$\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2} + \frac{\pi}{4}\right)\right)} = \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right) + \frac{d}{dx} \left(\frac{\pi}{4}\right)\right)}$$

Tillämpa konstantfaktorregeln $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ med $$$c = \frac{1}{2}$$$ och $$$f{\left(x \right)} = x$$$:

$$\left({\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)} + \frac{d}{dx} \left(\frac{\pi}{4}\right)\right) \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} = \left({\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)} + \frac{d}{dx} \left(\frac{\pi}{4}\right)\right) \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$

Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\left(\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2} + \frac{d}{dx} \left(\frac{\pi}{4}\right)\right) \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} = \left(\frac{{\color{red}\left(1\right)}}{2} + \frac{d}{dx} \left(\frac{\pi}{4}\right)\right) \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$

Derivatan av en konstant är $$$0$$$:

$$\left({\color{red}\left(\frac{d}{dx} \left(\frac{\pi}{4}\right)\right)} + \frac{1}{2}\right) \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} = \left({\color{red}\left(0\right)} + \frac{1}{2}\right) \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}$$

Förenkla:

$$\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} = \frac{1}{1 - \sin{\left(x \right)}}$$

Alltså, $$$\frac{d}{dx} \left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right) = \frac{1}{1 - \sin{\left(x \right)}}$$$.

Svar

$$$\frac{d}{dx} \left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right) = \frac{1}{1 - \sin{\left(x \right)}}$$$A


Please try a new game Rotatly