Derivatan av $$$\sqrt{\omega} t$$$ med avseende på $$$t$$$
Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg
Din inmatning
Bestäm $$$\frac{d}{dt} \left(\sqrt{\omega} t\right)$$$.
Lösning
Tillämpa konstantfaktorregeln $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ med $$$c = \sqrt{\omega}$$$ och $$$f{\left(t \right)} = t$$$:
$${\color{red}\left(\frac{d}{dt} \left(\sqrt{\omega} t\right)\right)} = {\color{red}\left(\sqrt{\omega} \frac{d}{dt} \left(t\right)\right)}$$Tillämpa potensregeln $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\sqrt{\omega} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = \sqrt{\omega} {\color{red}\left(1\right)}$$Alltså, $$$\frac{d}{dt} \left(\sqrt{\omega} t\right) = \sqrt{\omega}$$$.
Svar
$$$\frac{d}{dt} \left(\sqrt{\omega} t\right) = \sqrt{\omega}$$$A