Derivatan av $$$\sqrt{2} t - \sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}$$$
Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg
Din inmatning
Bestäm $$$\frac{d}{dt} \left(\sqrt{2} t - \sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}\right)$$$.
Lösning
Derivatan av en summa/differens är summan/differensen av derivatorna:
$${\color{red}\left(\frac{d}{dt} \left(\sqrt{2} t - \sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(\sqrt{2} t\right) - \frac{d}{dt} \left(\sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}\right)\right)}$$Derivatan av en konstant är $$$0$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(\sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}\right)\right)} + \frac{d}{dt} \left(\sqrt{2} t\right) = - {\color{red}\left(0\right)} + \frac{d}{dt} \left(\sqrt{2} t\right)$$Tillämpa konstantfaktorregeln $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ med $$$c = \sqrt{2}$$$ och $$$f{\left(t \right)} = t$$$:
$${\color{red}\left(\frac{d}{dt} \left(\sqrt{2} t\right)\right)} = {\color{red}\left(\sqrt{2} \frac{d}{dt} \left(t\right)\right)}$$Tillämpa potensregeln $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\sqrt{2} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = \sqrt{2} {\color{red}\left(1\right)}$$Alltså, $$$\frac{d}{dt} \left(\sqrt{2} t - \sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}\right) = \sqrt{2}$$$.
Svar
$$$\frac{d}{dt} \left(\sqrt{2} t - \sqrt{- \sqrt{2} \sqrt{\sqrt{5} + 3} - 2}\right) = \sqrt{2}$$$A