Derivatan av $$$\sin{\left(5 \theta \right)}$$$

Kalkylatorn beräknar derivatan av $$$\sin{\left(5 \theta \right)}$$$ och visar stegen.

Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d}{d\theta} \left(\sin{\left(5 \theta \right)}\right)$$$.

Lösning

Funktionen $$$\sin{\left(5 \theta \right)}$$$ är sammansättningen $$$f{\left(g{\left(\theta \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ och $$$g{\left(\theta \right)} = 5 \theta$$$.

Tillämpa kedjeregeln $$$\frac{d}{d\theta} \left(f{\left(g{\left(\theta \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{d\theta} \left(g{\left(\theta \right)}\right)$$$:

$${\color{red}\left(\frac{d}{d\theta} \left(\sin{\left(5 \theta \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{d\theta} \left(5 \theta\right)\right)}$$

Derivatan av sinus är $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{d\theta} \left(5 \theta\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{d\theta} \left(5 \theta\right)$$

Återgå till den ursprungliga variabeln:

$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{d\theta} \left(5 \theta\right) = \cos{\left({\color{red}\left(5 \theta\right)} \right)} \frac{d}{d\theta} \left(5 \theta\right)$$

Tillämpa konstantfaktorregeln $$$\frac{d}{d\theta} \left(c f{\left(\theta \right)}\right) = c \frac{d}{d\theta} \left(f{\left(\theta \right)}\right)$$$ med $$$c = 5$$$ och $$$f{\left(\theta \right)} = \theta$$$:

$$\cos{\left(5 \theta \right)} {\color{red}\left(\frac{d}{d\theta} \left(5 \theta\right)\right)} = \cos{\left(5 \theta \right)} {\color{red}\left(5 \frac{d}{d\theta} \left(\theta\right)\right)}$$

Tillämpa potensregeln $$$\frac{d}{d\theta} \left(\theta^{n}\right) = n \theta^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{d\theta} \left(\theta\right) = 1$$$:

$$5 \cos{\left(5 \theta \right)} {\color{red}\left(\frac{d}{d\theta} \left(\theta\right)\right)} = 5 \cos{\left(5 \theta \right)} {\color{red}\left(1\right)}$$

Alltså, $$$\frac{d}{d\theta} \left(\sin{\left(5 \theta \right)}\right) = 5 \cos{\left(5 \theta \right)}$$$.

Svar

$$$\frac{d}{d\theta} \left(\sin{\left(5 \theta \right)}\right) = 5 \cos{\left(5 \theta \right)}$$$A


Please try a new game Rotatly