Derivatan av $$$\sin{\left(4 t \right)}$$$

Kalkylatorn beräknar derivatan av $$$\sin{\left(4 t \right)}$$$ och visar stegen.

Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d}{dt} \left(\sin{\left(4 t \right)}\right)$$$.

Lösning

Funktionen $$$\sin{\left(4 t \right)}$$$ är sammansättningen $$$f{\left(g{\left(t \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ och $$$g{\left(t \right)} = 4 t$$$.

Tillämpa kedjeregeln $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dt} \left(\sin{\left(4 t \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dt} \left(4 t\right)\right)}$$

Derivatan av sinus är $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:

$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dt} \left(4 t\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dt} \left(4 t\right)$$

Återgå till den ursprungliga variabeln:

$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dt} \left(4 t\right) = \cos{\left({\color{red}\left(4 t\right)} \right)} \frac{d}{dt} \left(4 t\right)$$

Tillämpa konstantfaktorregeln $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ med $$$c = 4$$$ och $$$f{\left(t \right)} = t$$$:

$$\cos{\left(4 t \right)} {\color{red}\left(\frac{d}{dt} \left(4 t\right)\right)} = \cos{\left(4 t \right)} {\color{red}\left(4 \frac{d}{dt} \left(t\right)\right)}$$

Tillämpa potensregeln $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dt} \left(t\right) = 1$$$:

$$4 \cos{\left(4 t \right)} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = 4 \cos{\left(4 t \right)} {\color{red}\left(1\right)}$$

Alltså, $$$\frac{d}{dt} \left(\sin{\left(4 t \right)}\right) = 4 \cos{\left(4 t \right)}$$$.

Svar

$$$\frac{d}{dt} \left(\sin{\left(4 t \right)}\right) = 4 \cos{\left(4 t \right)}$$$A


Please try a new game Rotatly