Derivatan av $$$\sec{\left(\theta \right)}$$$
Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg
Din inmatning
Bestäm $$$\frac{d}{d\theta} \left(\sec{\left(\theta \right)}\right)$$$.
Lösning
Sekantens derivata är $$$\frac{d}{d\theta} \left(\sec{\left(\theta \right)}\right) = \tan{\left(\theta \right)} \sec{\left(\theta \right)}$$$:
$${\color{red}\left(\frac{d}{d\theta} \left(\sec{\left(\theta \right)}\right)\right)} = {\color{red}\left(\tan{\left(\theta \right)} \sec{\left(\theta \right)}\right)}$$Alltså, $$$\frac{d}{d\theta} \left(\sec{\left(\theta \right)}\right) = \tan{\left(\theta \right)} \sec{\left(\theta \right)}$$$.
Svar
$$$\frac{d}{d\theta} \left(\sec{\left(\theta \right)}\right) = \tan{\left(\theta \right)} \sec{\left(\theta \right)}$$$A
Please try a new game Rotatly