Derivatan av $$$\ln^{2}\left(x\right)$$$
Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg
Din inmatning
Bestäm $$$\frac{d}{dx} \left(\ln^{2}\left(x\right)\right)$$$.
Lösning
Funktionen $$$\ln^{2}\left(x\right)$$$ är sammansättningen $$$f{\left(g{\left(x \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = u^{2}$$$ och $$$g{\left(x \right)} = \ln\left(x\right)$$$.
Tillämpa kedjeregeln $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln^{2}\left(x\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$Tillämpa potensregeln $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ med $$$n = 2$$$:
$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$Återgå till den ursprungliga variabeln:
$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = 2 {\color{red}\left(\ln\left(x\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$Derivatan av den naturliga logaritmen är $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$2 \ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = 2 \ln\left(x\right) {\color{red}\left(\frac{1}{x}\right)}$$Alltså, $$$\frac{d}{dx} \left(\ln^{2}\left(x\right)\right) = \frac{2 \ln\left(x\right)}{x}$$$.
Svar
$$$\frac{d}{dx} \left(\ln^{2}\left(x\right)\right) = \frac{2 \ln\left(x\right)}{x}$$$A