Derivatan av $$$\ln\left(\frac{t}{t + 1}\right)$$$

Kalkylatorn beräknar derivatan av $$$\ln\left(\frac{t}{t + 1}\right)$$$ och visar stegen.

Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right)$$$.

Lösning

Funktionen $$$\ln\left(\frac{t}{t + 1}\right)$$$ är sammansättningen $$$f{\left(g{\left(t \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = \ln\left(u\right)$$$ och $$$g{\left(t \right)} = \frac{t}{t + 1}$$$.

Tillämpa kedjeregeln $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dt} \left(\frac{t}{t + 1}\right)\right)}$$

Derivatan av den naturliga logaritmen är $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dt} \left(\frac{t}{t + 1}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dt} \left(\frac{t}{t + 1}\right)$$

Återgå till den ursprungliga variabeln:

$$\frac{\frac{d}{dt} \left(\frac{t}{t + 1}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dt} \left(\frac{t}{t + 1}\right)}{{\color{red}\left(\frac{t}{t + 1}\right)}}$$

Tillämpa kvotregeln $$$\frac{d}{dt} \left(\frac{f{\left(t \right)}}{g{\left(t \right)}}\right) = \frac{\frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} - f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)}{g^{2}{\left(t \right)}}$$$ med $$$f{\left(t \right)} = t$$$ och $$$g{\left(t \right)} = t + 1$$$:

$$\frac{\left(t + 1\right) {\color{red}\left(\frac{d}{dt} \left(\frac{t}{t + 1}\right)\right)}}{t} = \frac{\left(t + 1\right) {\color{red}\left(\frac{\frac{d}{dt} \left(t\right) \left(t + 1\right) - t \frac{d}{dt} \left(t + 1\right)}{\left(t + 1\right)^{2}}\right)}}{t}$$

Tillämpa potensregeln $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dt} \left(t\right) = 1$$$:

$$\frac{- t \frac{d}{dt} \left(t + 1\right) + \left(t + 1\right) {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{t \left(t + 1\right)} = \frac{- t \frac{d}{dt} \left(t + 1\right) + \left(t + 1\right) {\color{red}\left(1\right)}}{t \left(t + 1\right)}$$

Derivatan av en summa/differens är summan/differensen av derivatorna:

$$\frac{- t {\color{red}\left(\frac{d}{dt} \left(t + 1\right)\right)} + t + 1}{t \left(t + 1\right)} = \frac{- t {\color{red}\left(\frac{d}{dt} \left(t\right) + \frac{d}{dt} \left(1\right)\right)} + t + 1}{t \left(t + 1\right)}$$

Derivatan av en konstant är $$$0$$$:

$$\frac{- t \left({\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(t\right)\right) + t + 1}{t \left(t + 1\right)} = \frac{- t \left({\color{red}\left(0\right)} + \frac{d}{dt} \left(t\right)\right) + t + 1}{t \left(t + 1\right)}$$

Tillämpa potensregeln $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dt} \left(t\right) = 1$$$:

$$\frac{- t {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} + t + 1}{t \left(t + 1\right)} = \frac{- t {\color{red}\left(1\right)} + t + 1}{t \left(t + 1\right)}$$

Alltså, $$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right) = \frac{1}{t \left(t + 1\right)}$$$.

Svar

$$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right) = \frac{1}{t \left(t + 1\right)}$$$A


Please try a new game Rotatly