Derivatan av $$$e^{x} + \sin{\left(y z \right)}$$$ med avseende på $$$y$$$
Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg
Din inmatning
Bestäm $$$\frac{d}{dy} \left(e^{x} + \sin{\left(y z \right)}\right)$$$.
Lösning
Derivatan av en summa/differens är summan/differensen av derivatorna:
$${\color{red}\left(\frac{d}{dy} \left(e^{x} + \sin{\left(y z \right)}\right)\right)} = {\color{red}\left(\frac{d}{dy} \left(e^{x}\right) + \frac{d}{dy} \left(\sin{\left(y z \right)}\right)\right)}$$Funktionen $$$\sin{\left(y z \right)}$$$ är sammansättningen $$$f{\left(g{\left(y \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ och $$$g{\left(y \right)} = y z$$$.
Tillämpa kedjeregeln $$$\frac{d}{dy} \left(f{\left(g{\left(y \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dy} \left(g{\left(y \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dy} \left(\sin{\left(y z \right)}\right)\right)} + \frac{d}{dy} \left(e^{x}\right) = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dy} \left(y z\right)\right)} + \frac{d}{dy} \left(e^{x}\right)$$Derivatan av sinus är $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dy} \left(y z\right) + \frac{d}{dy} \left(e^{x}\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dy} \left(y z\right) + \frac{d}{dy} \left(e^{x}\right)$$Återgå till den ursprungliga variabeln:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dy} \left(y z\right) + \frac{d}{dy} \left(e^{x}\right) = \cos{\left({\color{red}\left(y z\right)} \right)} \frac{d}{dy} \left(y z\right) + \frac{d}{dy} \left(e^{x}\right)$$Tillämpa konstantfaktorregeln $$$\frac{d}{dy} \left(c f{\left(y \right)}\right) = c \frac{d}{dy} \left(f{\left(y \right)}\right)$$$ med $$$c = z$$$ och $$$f{\left(y \right)} = y$$$:
$$\cos{\left(y z \right)} {\color{red}\left(\frac{d}{dy} \left(y z\right)\right)} + \frac{d}{dy} \left(e^{x}\right) = \cos{\left(y z \right)} {\color{red}\left(z \frac{d}{dy} \left(y\right)\right)} + \frac{d}{dy} \left(e^{x}\right)$$Derivatan av en konstant är $$$0$$$:
$$z \cos{\left(y z \right)} \frac{d}{dy} \left(y\right) + {\color{red}\left(\frac{d}{dy} \left(e^{x}\right)\right)} = z \cos{\left(y z \right)} \frac{d}{dy} \left(y\right) + {\color{red}\left(0\right)}$$Tillämpa potensregeln $$$\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dy} \left(y\right) = 1$$$:
$$z \cos{\left(y z \right)} {\color{red}\left(\frac{d}{dy} \left(y\right)\right)} = z \cos{\left(y z \right)} {\color{red}\left(1\right)}$$Alltså, $$$\frac{d}{dy} \left(e^{x} + \sin{\left(y z \right)}\right) = z \cos{\left(y z \right)}$$$.
Svar
$$$\frac{d}{dy} \left(e^{x} + \sin{\left(y z \right)}\right) = z \cos{\left(y z \right)}$$$A