Derivatan av $$$e^{x} + \sin{\left(y z \right)}$$$ med avseende på $$$x$$$
Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg
Din inmatning
Bestäm $$$\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right)$$$.
Lösning
Derivatan av en summa/differens är summan/differensen av derivatorna:
$${\color{red}\left(\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(e^{x}\right) + \frac{d}{dx} \left(\sin{\left(y z \right)}\right)\right)}$$Derivatan av en konstant är $$$0$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(y z \right)}\right)\right)} + \frac{d}{dx} \left(e^{x}\right) = {\color{red}\left(0\right)} + \frac{d}{dx} \left(e^{x}\right)$$Derivatan av exponentialfunktionen är $$$\frac{d}{dx} \left(e^{x}\right) = e^{x}$$$:
$${\color{red}\left(\frac{d}{dx} \left(e^{x}\right)\right)} = {\color{red}\left(e^{x}\right)}$$Alltså, $$$\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right) = e^{x}$$$.
Svar
$$$\frac{d}{dx} \left(e^{x} + \sin{\left(y z \right)}\right) = e^{x}$$$A
Please try a new game Rotatly