Derivatan av $$$e^{- x} \sin{\left(x \right)}$$$ i $$$x = c$$$
Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg
Din inmatning
Bestäm $$$\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)$$$ och beräkna den vid $$$x = c$$$.
Lösning
Tillämpa produktregeln $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ med $$$f{\left(x \right)} = e^{- x}$$$ och $$$g{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(e^{- x}\right) \sin{\left(x \right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$Funktionen $$$e^{- x}$$$ är sammansättningen $$$f{\left(g{\left(x \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = e^{u}$$$ och $$$g{\left(x \right)} = - x$$$.
Tillämpa kedjeregeln $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$\sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(e^{- x}\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = \sin{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(- x\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$Derivatan av exponentialfunktionen är $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$$\sin{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = \sin{\left(x \right)} {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$Återgå till den ursprungliga variabeln:
$$e^{{\color{red}\left(u\right)}} \sin{\left(x \right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = e^{{\color{red}\left(- x\right)}} \sin{\left(x \right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$Tillämpa konstantfaktorregeln $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ med $$$c = -1$$$ och $$$f{\left(x \right)} = x$$$:
$$e^{- x} \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(- x\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = e^{- x} \sin{\left(x \right)} {\color{red}\left(- \frac{d}{dx} \left(x\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$Derivatan av sinus är $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$$- e^{- x} \sin{\left(x \right)} \frac{d}{dx} \left(x\right) + e^{- x} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} = - e^{- x} \sin{\left(x \right)} \frac{d}{dx} \left(x\right) + e^{- x} {\color{red}\left(\cos{\left(x \right)}\right)}$$Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- e^{- x} \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + e^{- x} \cos{\left(x \right)} = - e^{- x} \sin{\left(x \right)} {\color{red}\left(1\right)} + e^{- x} \cos{\left(x \right)}$$Förenkla:
$$- e^{- x} \sin{\left(x \right)} + e^{- x} \cos{\left(x \right)} = \sqrt{2} e^{- x} \cos{\left(x + \frac{\pi}{4} \right)}$$Alltså, $$$\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right) = \sqrt{2} e^{- x} \cos{\left(x + \frac{\pi}{4} \right)}$$$.
Slutligen, beräkna derivatans värde i $$$x = c$$$.
$$$\left(\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)\right)|_{\left(x = c\right)} = \sqrt{2} e^{- c} \cos{\left(c + \frac{\pi}{4} \right)}$$$
Svar
$$$\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right) = \sqrt{2} e^{- x} \cos{\left(x + \frac{\pi}{4} \right)}$$$A
$$$\left(\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)\right)|_{\left(x = c\right)} = \sqrt{2} e^{- c} \cos{\left(c + \frac{\pi}{4} \right)}\approx 1.414213562373095 e^{- c} \cos{\left(c + \frac{\pi}{4} \right)}$$$A