Derivatan av $$$\cos{\left(x y \right)}$$$ med avseende på $$$y$$$
Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg
Din inmatning
Bestäm $$$\frac{d}{dy} \left(\cos{\left(x y \right)}\right)$$$.
Lösning
Funktionen $$$\cos{\left(x y \right)}$$$ är sammansättningen $$$f{\left(g{\left(y \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ och $$$g{\left(y \right)} = x y$$$.
Tillämpa kedjeregeln $$$\frac{d}{dy} \left(f{\left(g{\left(y \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dy} \left(g{\left(y \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dy} \left(\cos{\left(x y \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dy} \left(x y\right)\right)}$$Derivatan av cosinus är $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dy} \left(x y\right) = {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dy} \left(x y\right)$$Återgå till den ursprungliga variabeln:
$$- \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dy} \left(x y\right) = - \sin{\left({\color{red}\left(x y\right)} \right)} \frac{d}{dy} \left(x y\right)$$Tillämpa konstantfaktorregeln $$$\frac{d}{dy} \left(c f{\left(y \right)}\right) = c \frac{d}{dy} \left(f{\left(y \right)}\right)$$$ med $$$c = x$$$ och $$$f{\left(y \right)} = y$$$:
$$- \sin{\left(x y \right)} {\color{red}\left(\frac{d}{dy} \left(x y\right)\right)} = - \sin{\left(x y \right)} {\color{red}\left(x \frac{d}{dy} \left(y\right)\right)}$$Tillämpa potensregeln $$$\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dy} \left(y\right) = 1$$$:
$$- x \sin{\left(x y \right)} {\color{red}\left(\frac{d}{dy} \left(y\right)\right)} = - x \sin{\left(x y \right)} {\color{red}\left(1\right)}$$Alltså, $$$\frac{d}{dy} \left(\cos{\left(x y \right)}\right) = - x \sin{\left(x y \right)}$$$.
Svar
$$$\frac{d}{dy} \left(\cos{\left(x y \right)}\right) = - x \sin{\left(x y \right)}$$$A