Derivatan av $$$\operatorname{atan}{\left(\frac{1}{x} \right)}$$$

Kalkylatorn beräknar derivatan av $$$\operatorname{atan}{\left(\frac{1}{x} \right)}$$$ och visar stegen.

Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d}{dx} \left(\operatorname{atan}{\left(\frac{1}{x} \right)}\right)$$$.

Lösning

Funktionen $$$\operatorname{atan}{\left(\frac{1}{x} \right)}$$$ är sammansättningen $$$f{\left(g{\left(x \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = \operatorname{atan}{\left(u \right)}$$$ och $$$g{\left(x \right)} = \frac{1}{x}$$$.

Tillämpa kedjeregeln $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\operatorname{atan}{\left(\frac{1}{x} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right) \frac{d}{dx} \left(\frac{1}{x}\right)\right)}$$

Derivatan av arctangens är $$$\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right) = \frac{1}{u^{2} + 1}$$$:

$${\color{red}\left(\frac{d}{du} \left(\operatorname{atan}{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{1}{x}\right) = {\color{red}\left(\frac{1}{u^{2} + 1}\right)} \frac{d}{dx} \left(\frac{1}{x}\right)$$

Återgå till den ursprungliga variabeln:

$$\frac{\frac{d}{dx} \left(\frac{1}{x}\right)}{{\color{red}\left(u\right)}^{2} + 1} = \frac{\frac{d}{dx} \left(\frac{1}{x}\right)}{{\color{red}\left(\frac{1}{x}\right)}^{2} + 1}$$

Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = -1$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(\frac{1}{x}\right)\right)}}{1 + \frac{1}{x^{2}}} = \frac{{\color{red}\left(- \frac{1}{x^{2}}\right)}}{1 + \frac{1}{x^{2}}}$$

Förenkla:

$$- \frac{1}{x^{2} \left(1 + \frac{1}{x^{2}}\right)} = - \frac{1}{x^{2} + 1}$$

Alltså, $$$\frac{d}{dx} \left(\operatorname{atan}{\left(\frac{1}{x} \right)}\right) = - \frac{1}{x^{2} + 1}$$$.

Svar

$$$\frac{d}{dx} \left(\operatorname{atan}{\left(\frac{1}{x} \right)}\right) = - \frac{1}{x^{2} + 1}$$$A


Please try a new game Rotatly