Derivatan av $$$2 x^{3} + 3$$$

Kalkylatorn beräknar derivatan av $$$2 x^{3} + 3$$$ och visar stegen.

Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d}{dx} \left(2 x^{3} + 3\right)$$$.

Lösning

Derivatan av en summa/differens är summan/differensen av derivatorna:

$${\color{red}\left(\frac{d}{dx} \left(2 x^{3} + 3\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(2 x^{3}\right) + \frac{d}{dx} \left(3\right)\right)}$$

Tillämpa konstantfaktorregeln $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ med $$$c = 2$$$ och $$$f{\left(x \right)} = x^{3}$$$:

$${\color{red}\left(\frac{d}{dx} \left(2 x^{3}\right)\right)} + \frac{d}{dx} \left(3\right) = {\color{red}\left(2 \frac{d}{dx} \left(x^{3}\right)\right)} + \frac{d}{dx} \left(3\right)$$

Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 3$$$:

$$2 {\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} + \frac{d}{dx} \left(3\right) = 2 {\color{red}\left(3 x^{2}\right)} + \frac{d}{dx} \left(3\right)$$

Derivatan av en konstant är $$$0$$$:

$$6 x^{2} + {\color{red}\left(\frac{d}{dx} \left(3\right)\right)} = 6 x^{2} + {\color{red}\left(0\right)}$$

Alltså, $$$\frac{d}{dx} \left(2 x^{3} + 3\right) = 6 x^{2}$$$.

Svar

$$$\frac{d}{dx} \left(2 x^{3} + 3\right) = 6 x^{2}$$$A


Please try a new game Rotatly