Derivatan av $$$2 t - 1 + \frac{1}{t}$$$
Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg
Din inmatning
Bestäm $$$\frac{d}{dt} \left(2 t - 1 + \frac{1}{t}\right)$$$.
Lösning
Derivatan av en summa/differens är summan/differensen av derivatorna:
$${\color{red}\left(\frac{d}{dt} \left(2 t - 1 + \frac{1}{t}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(2 t\right) - \frac{d}{dt} \left(1\right) + \frac{d}{dt} \left(\frac{1}{t}\right)\right)}$$Derivatan av en konstant är $$$0$$$:
$$- {\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(\frac{1}{t}\right) + \frac{d}{dt} \left(2 t\right) = - {\color{red}\left(0\right)} + \frac{d}{dt} \left(\frac{1}{t}\right) + \frac{d}{dt} \left(2 t\right)$$Tillämpa konstantfaktorregeln $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ med $$$c = 2$$$ och $$$f{\left(t \right)} = t$$$:
$${\color{red}\left(\frac{d}{dt} \left(2 t\right)\right)} + \frac{d}{dt} \left(\frac{1}{t}\right) = {\color{red}\left(2 \frac{d}{dt} \left(t\right)\right)} + \frac{d}{dt} \left(\frac{1}{t}\right)$$Tillämpa potensregeln $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$2 {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} + \frac{d}{dt} \left(\frac{1}{t}\right) = 2 {\color{red}\left(1\right)} + \frac{d}{dt} \left(\frac{1}{t}\right)$$Tillämpa potensregeln $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ med $$$n = -1$$$:
$${\color{red}\left(\frac{d}{dt} \left(\frac{1}{t}\right)\right)} + 2 = {\color{red}\left(- \frac{1}{t^{2}}\right)} + 2$$Alltså, $$$\frac{d}{dt} \left(2 t - 1 + \frac{1}{t}\right) = 2 - \frac{1}{t^{2}}$$$.
Svar
$$$\frac{d}{dt} \left(2 t - 1 + \frac{1}{t}\right) = 2 - \frac{1}{t^{2}}$$$A