Derivatan av $$$- \frac{\sqrt{5} \sin{\left(t \right)}}{5}$$$

Kalkylatorn beräknar derivatan av $$$- \frac{\sqrt{5} \sin{\left(t \right)}}{5}$$$ och visar stegen.

Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right)$$$.

Lösning

Tillämpa konstantfaktorregeln $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ med $$$c = - \frac{\sqrt{5}}{5}$$$ och $$$f{\left(t \right)} = \sin{\left(t \right)}$$$:

$${\color{red}\left(\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right)\right)} = {\color{red}\left(- \frac{\sqrt{5}}{5} \frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}$$

Derivatan av sinus är $$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:

$$- \frac{\sqrt{5} {\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}}{5} = - \frac{\sqrt{5} {\color{red}\left(\cos{\left(t \right)}\right)}}{5}$$

Alltså, $$$\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right) = - \frac{\sqrt{5} \cos{\left(t \right)}}{5}$$$.

Svar

$$$\frac{d}{dt} \left(- \frac{\sqrt{5} \sin{\left(t \right)}}{5}\right) = - \frac{\sqrt{5} \cos{\left(t \right)}}{5}$$$A


Please try a new game Rotatly