Derivatan av $$$- \frac{\pi}{6} + z$$$ med avseende på $$$\pi$$$

Kalkylatorn kommer att beräkna derivatan av $$$- \frac{\pi}{6} + z$$$ med avseende på $$$\pi$$$, med steg som visas.

Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg

Lämna tomt för automatisk identifiering.
Lämna tomt om du inte behöver derivatan i en specifik punkt.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\frac{d}{d\pi} \left(- \frac{\pi}{6} + z\right)$$$.

Lösning

Derivatan av en summa/differens är summan/differensen av derivatorna:

$${\color{red}\left(\frac{d}{d\pi} \left(- \frac{\pi}{6} + z\right)\right)} = {\color{red}\left(- \frac{d}{d\pi} \left(\frac{\pi}{6}\right) + \frac{dz}{d\pi}\right)}$$

Derivatan av en konstant är $$$0$$$:

$${\color{red}\left(\frac{dz}{d\pi}\right)} - \frac{d}{d\pi} \left(\frac{\pi}{6}\right) = {\color{red}\left(0\right)} - \frac{d}{d\pi} \left(\frac{\pi}{6}\right)$$

Tillämpa konstantfaktorregeln $$$\frac{d}{d\pi} \left(c f{\left(\pi \right)}\right) = c \frac{d}{d\pi} \left(f{\left(\pi \right)}\right)$$$ med $$$c = \frac{1}{6}$$$ och $$$f{\left(\pi \right)} = \pi$$$:

$$- {\color{red}\left(\frac{d}{d\pi} \left(\frac{\pi}{6}\right)\right)} = - {\color{red}\left(\frac{\frac{d}{d\pi} \left(\pi\right)}{6}\right)}$$

Tillämpa potensregeln $$$\frac{d}{d\pi} \left(\pi^{n}\right) = n \pi^{n - 1}$$$ med $$$n = 1$$$, det vill säga $$$\frac{d}{d\pi} \left(\pi\right) = 1$$$:

$$- \frac{{\color{red}\left(\frac{d}{d\pi} \left(\pi\right)\right)}}{6} = - \frac{{\color{red}\left(1\right)}}{6}$$

Alltså, $$$\frac{d}{d\pi} \left(- \frac{\pi}{6} + z\right) = - \frac{1}{6}$$$.

Svar

$$$\frac{d}{d\pi} \left(- \frac{\pi}{6} + z\right) = - \frac{1}{6}$$$A


Please try a new game Rotatly